Random voxel filtering. (#1753)
This leads to slightly slower performance but better quality. Also replaces the VoxelFilter class by free standing functions. Signed-off-by: Wolfgang Hess <whess@lyft.com>master
parent
1ad6398bce
commit
c84da8ec0f
|
@ -58,8 +58,8 @@ LocalTrajectoryBuilder2D::TransformToGravityAlignedFrameAndFilter(
|
|||
options_.min_z(), options_.max_z());
|
||||
return sensor::RangeData{
|
||||
cropped.origin,
|
||||
sensor::VoxelFilter(options_.voxel_filter_size()).Filter(cropped.returns),
|
||||
sensor::VoxelFilter(options_.voxel_filter_size()).Filter(cropped.misses)};
|
||||
sensor::VoxelFilter(cropped.returns, options_.voxel_filter_size()),
|
||||
sensor::VoxelFilter(cropped.misses, options_.voxel_filter_size())};
|
||||
}
|
||||
|
||||
std::unique_ptr<transform::Rigid2d> LocalTrajectoryBuilder2D::ScanMatch(
|
||||
|
@ -226,8 +226,8 @@ LocalTrajectoryBuilder2D::AddAccumulatedRangeData(
|
|||
non_gravity_aligned_pose_prediction * gravity_alignment.inverse());
|
||||
|
||||
const sensor::PointCloud& filtered_gravity_aligned_point_cloud =
|
||||
sensor::AdaptiveVoxelFilter(options_.adaptive_voxel_filter_options())
|
||||
.Filter(gravity_aligned_range_data.returns);
|
||||
sensor::AdaptiveVoxelFilter(gravity_aligned_range_data.returns,
|
||||
options_.adaptive_voxel_filter_options());
|
||||
if (filtered_gravity_aligned_point_cloud.empty()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
|
|
@ -154,9 +154,8 @@ LocalTrajectoryBuilder3D::AddRangeData(
|
|||
accumulated_point_cloud_origin_data_.clear();
|
||||
}
|
||||
|
||||
synchronized_data.ranges =
|
||||
sensor::VoxelFilter(0.5f * options_.voxel_filter_size())
|
||||
.Filter(synchronized_data.ranges);
|
||||
synchronized_data.ranges = sensor::VoxelFilter(
|
||||
synchronized_data.ranges, 0.5f * options_.voxel_filter_size());
|
||||
accumulated_point_cloud_origin_data_.emplace_back(
|
||||
std::move(synchronized_data));
|
||||
++num_accumulated_;
|
||||
|
@ -237,10 +236,10 @@ LocalTrajectoryBuilder3D::AddRangeData(
|
|||
const auto voxel_filter_start = std::chrono::steady_clock::now();
|
||||
const sensor::RangeData filtered_range_data = {
|
||||
extrapolation_result.current_pose.translation().cast<float>(),
|
||||
sensor::VoxelFilter(options_.voxel_filter_size())
|
||||
.Filter(accumulated_range_data.returns),
|
||||
sensor::VoxelFilter(options_.voxel_filter_size())
|
||||
.Filter(accumulated_range_data.misses)};
|
||||
sensor::VoxelFilter(accumulated_range_data.returns,
|
||||
options_.voxel_filter_size()),
|
||||
sensor::VoxelFilter(accumulated_range_data.misses,
|
||||
options_.voxel_filter_size())};
|
||||
const auto voxel_filter_stop = std::chrono::steady_clock::now();
|
||||
const auto voxel_filter_duration = voxel_filter_stop - voxel_filter_start;
|
||||
|
||||
|
@ -274,19 +273,18 @@ LocalTrajectoryBuilder3D::AddAccumulatedRangeData(
|
|||
|
||||
const auto scan_matcher_start = std::chrono::steady_clock::now();
|
||||
|
||||
sensor::AdaptiveVoxelFilter adaptive_voxel_filter(
|
||||
options_.high_resolution_adaptive_voxel_filter_options());
|
||||
const sensor::PointCloud high_resolution_point_cloud_in_tracking =
|
||||
adaptive_voxel_filter.Filter(filtered_range_data_in_tracking.returns);
|
||||
sensor::AdaptiveVoxelFilter(
|
||||
filtered_range_data_in_tracking.returns,
|
||||
options_.high_resolution_adaptive_voxel_filter_options());
|
||||
if (high_resolution_point_cloud_in_tracking.empty()) {
|
||||
LOG(WARNING) << "Dropped empty high resolution point cloud data.";
|
||||
return nullptr;
|
||||
}
|
||||
sensor::AdaptiveVoxelFilter low_resolution_adaptive_voxel_filter(
|
||||
options_.low_resolution_adaptive_voxel_filter_options());
|
||||
const sensor::PointCloud low_resolution_point_cloud_in_tracking =
|
||||
low_resolution_adaptive_voxel_filter.Filter(
|
||||
filtered_range_data_in_tracking.returns);
|
||||
sensor::AdaptiveVoxelFilter(
|
||||
filtered_range_data_in_tracking.returns,
|
||||
options_.low_resolution_adaptive_voxel_filter_options());
|
||||
if (low_resolution_point_cloud_in_tracking.empty()) {
|
||||
LOG(WARNING) << "Dropped empty low resolution point cloud data.";
|
||||
return nullptr;
|
||||
|
|
|
@ -17,7 +17,10 @@
|
|||
#include "cartographer/sensor/internal/voxel_filter.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <random>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/container/flat_hash_map.h"
|
||||
#include "cartographer/common/math.h"
|
||||
|
||||
namespace cartographer {
|
||||
|
@ -43,7 +46,7 @@ PointCloud AdaptivelyVoxelFiltered(
|
|||
// 'point_cloud' is already sparse enough.
|
||||
return point_cloud;
|
||||
}
|
||||
PointCloud result = VoxelFilter(options.max_length()).Filter(point_cloud);
|
||||
PointCloud result = VoxelFilter(point_cloud, options.max_length());
|
||||
if (result.size() >= options.min_num_points()) {
|
||||
// Filtering with 'max_length' resulted in a sufficiently dense point cloud.
|
||||
return result;
|
||||
|
@ -54,15 +57,14 @@ PointCloud AdaptivelyVoxelFiltered(
|
|||
for (float high_length = options.max_length();
|
||||
high_length > 1e-2f * options.max_length(); high_length /= 2.f) {
|
||||
float low_length = high_length / 2.f;
|
||||
result = VoxelFilter(low_length).Filter(point_cloud);
|
||||
result = VoxelFilter(point_cloud, low_length);
|
||||
if (result.size() >= options.min_num_points()) {
|
||||
// Binary search to find the right amount of filtering. 'low_length' gave
|
||||
// a sufficiently dense 'result', 'high_length' did not. We stop when the
|
||||
// edge length is at most 10% off.
|
||||
while ((high_length - low_length) / low_length > 1e-1f) {
|
||||
const float mid_length = (low_length + high_length) / 2.f;
|
||||
const PointCloud candidate =
|
||||
VoxelFilter(mid_length).Filter(point_cloud);
|
||||
const PointCloud candidate = VoxelFilter(point_cloud, mid_length);
|
||||
if (candidate.size() >= options.min_num_points()) {
|
||||
low_length = mid_length;
|
||||
result = candidate;
|
||||
|
@ -76,58 +78,77 @@ PointCloud AdaptivelyVoxelFiltered(
|
|||
return result;
|
||||
}
|
||||
|
||||
using VoxelKeyType = uint64_t;
|
||||
|
||||
VoxelKeyType GetVoxelCellIndex(const Eigen::Vector3f& point,
|
||||
const float resolution) {
|
||||
const Eigen::Array3f index = point.array() / resolution;
|
||||
const uint64_t x = common::RoundToInt(index.x());
|
||||
const uint64_t y = common::RoundToInt(index.y());
|
||||
const uint64_t z = common::RoundToInt(index.z());
|
||||
return (x << 42) + (y << 21) + z;
|
||||
}
|
||||
|
||||
template <class T, class PointFunction>
|
||||
std::vector<T> RandomizedVoxelFilter(const std::vector<T>& point_cloud,
|
||||
const float resolution,
|
||||
PointFunction&& point_function) {
|
||||
// According to https://en.wikipedia.org/wiki/Reservoir_sampling
|
||||
std::minstd_rand0 generator;
|
||||
absl::flat_hash_map<VoxelKeyType, std::pair<int, int>>
|
||||
voxel_count_and_point_index;
|
||||
for (size_t i = 0; i < point_cloud.size(); i++) {
|
||||
auto& voxel = voxel_count_and_point_index[GetVoxelCellIndex(
|
||||
point_function(point_cloud[i]), resolution)];
|
||||
voxel.first++;
|
||||
if (voxel.first == 1) {
|
||||
voxel.second = i;
|
||||
} else {
|
||||
std::uniform_int_distribution<> distribution(1, voxel.first);
|
||||
if (distribution(generator) == voxel.first) {
|
||||
voxel.second = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<bool> points_used(point_cloud.size(), false);
|
||||
for (const auto& voxel_and_index : voxel_count_and_point_index) {
|
||||
points_used[voxel_and_index.second.second] = true;
|
||||
}
|
||||
|
||||
std::vector<T> results;
|
||||
for (size_t i = 0; i < point_cloud.size(); i++) {
|
||||
if (points_used[i]) {
|
||||
results.push_back(point_cloud[i]);
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
PointCloud VoxelFilter::Filter(const PointCloud& point_cloud) {
|
||||
PointCloud results;
|
||||
for (const RangefinderPoint& point : point_cloud) {
|
||||
auto it_inserted =
|
||||
voxel_set_.insert(IndexToKey(GetCellIndex(point.position)));
|
||||
if (it_inserted.second) {
|
||||
results.push_back(point);
|
||||
}
|
||||
}
|
||||
return results;
|
||||
PointCloud VoxelFilter(const PointCloud& point_cloud, const float resolution) {
|
||||
return RandomizedVoxelFilter(
|
||||
point_cloud, resolution,
|
||||
[](const RangefinderPoint& point) { return point.position; });
|
||||
}
|
||||
|
||||
TimedPointCloud VoxelFilter::Filter(const TimedPointCloud& timed_point_cloud) {
|
||||
TimedPointCloud results;
|
||||
for (const TimedRangefinderPoint& point : timed_point_cloud) {
|
||||
auto it_inserted =
|
||||
voxel_set_.insert(IndexToKey(GetCellIndex(point.position)));
|
||||
if (it_inserted.second) {
|
||||
results.push_back(point);
|
||||
}
|
||||
}
|
||||
return results;
|
||||
TimedPointCloud VoxelFilter(const TimedPointCloud& timed_point_cloud,
|
||||
const float resolution) {
|
||||
return RandomizedVoxelFilter(
|
||||
timed_point_cloud, resolution,
|
||||
[](const TimedRangefinderPoint& point) { return point.position; });
|
||||
}
|
||||
|
||||
std::vector<TimedPointCloudOriginData::RangeMeasurement> VoxelFilter::Filter(
|
||||
const std::vector<TimedPointCloudOriginData::RangeMeasurement>&
|
||||
range_measurements) {
|
||||
std::vector<TimedPointCloudOriginData::RangeMeasurement> results;
|
||||
for (const auto& range_measurement : range_measurements) {
|
||||
auto it_inserted = voxel_set_.insert(
|
||||
IndexToKey(GetCellIndex(range_measurement.point_time.position)));
|
||||
if (it_inserted.second) {
|
||||
results.push_back(range_measurement);
|
||||
}
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
VoxelFilter::KeyType VoxelFilter::IndexToKey(const Eigen::Array3i& index) {
|
||||
KeyType k_0(static_cast<uint32>(index[0]));
|
||||
KeyType k_1(static_cast<uint32>(index[1]));
|
||||
KeyType k_2(static_cast<uint32>(index[2]));
|
||||
return (k_0 << 2 * 32) | (k_1 << 1 * 32) | k_2;
|
||||
}
|
||||
|
||||
Eigen::Array3i VoxelFilter::GetCellIndex(const Eigen::Vector3f& point) const {
|
||||
Eigen::Array3f index = point.array() / resolution_;
|
||||
return Eigen::Array3i(common::RoundToInt(index.x()),
|
||||
common::RoundToInt(index.y()),
|
||||
common::RoundToInt(index.z()));
|
||||
std::vector<sensor::TimedPointCloudOriginData::RangeMeasurement> VoxelFilter(
|
||||
const std::vector<sensor::TimedPointCloudOriginData::RangeMeasurement>&
|
||||
range_measurements,
|
||||
const float resolution) {
|
||||
return RandomizedVoxelFilter(
|
||||
range_measurements, resolution,
|
||||
[](const sensor::TimedPointCloudOriginData::RangeMeasurement&
|
||||
range_measurement) {
|
||||
return range_measurement.point_time.position;
|
||||
});
|
||||
}
|
||||
|
||||
proto::AdaptiveVoxelFilterOptions CreateAdaptiveVoxelFilterOptions(
|
||||
|
@ -140,13 +161,11 @@ proto::AdaptiveVoxelFilterOptions CreateAdaptiveVoxelFilterOptions(
|
|||
return options;
|
||||
}
|
||||
|
||||
AdaptiveVoxelFilter::AdaptiveVoxelFilter(
|
||||
const proto::AdaptiveVoxelFilterOptions& options)
|
||||
: options_(options) {}
|
||||
|
||||
PointCloud AdaptiveVoxelFilter::Filter(const PointCloud& point_cloud) const {
|
||||
PointCloud AdaptiveVoxelFilter(
|
||||
const PointCloud& point_cloud,
|
||||
const proto::AdaptiveVoxelFilterOptions& options) {
|
||||
return AdaptivelyVoxelFiltered(
|
||||
options_, FilterByMaxRange(point_cloud, options_.max_range()));
|
||||
options, FilterByMaxRange(point_cloud, options.max_range()));
|
||||
}
|
||||
|
||||
} // namespace sensor
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
|
||||
#include <bitset>
|
||||
|
||||
#include "absl/container/flat_hash_set.h"
|
||||
#include "cartographer/common/lua_parameter_dictionary.h"
|
||||
#include "cartographer/sensor/point_cloud.h"
|
||||
#include "cartographer/sensor/proto/adaptive_voxel_filter_options.pb.h"
|
||||
|
@ -28,56 +27,21 @@
|
|||
namespace cartographer {
|
||||
namespace sensor {
|
||||
|
||||
// Voxel filter for point clouds. For each voxel, the assembled point cloud
|
||||
// contains the first point that fell into it from any of the inserted point
|
||||
// clouds.
|
||||
class VoxelFilter {
|
||||
public:
|
||||
// 'size' is the length of a voxel edge.
|
||||
explicit VoxelFilter(float size) : resolution_(size) {}
|
||||
|
||||
VoxelFilter(const VoxelFilter&) = delete;
|
||||
VoxelFilter& operator=(const VoxelFilter&) = delete;
|
||||
|
||||
// Returns a voxel filtered copy of 'point_cloud'.
|
||||
PointCloud Filter(const PointCloud& point_cloud);
|
||||
|
||||
// Same for TimedPointCloud.
|
||||
TimedPointCloud Filter(const TimedPointCloud& timed_point_cloud);
|
||||
|
||||
// Same for RangeMeasurement.
|
||||
std::vector<TimedPointCloudOriginData::RangeMeasurement> Filter(
|
||||
const std::vector<TimedPointCloudOriginData::RangeMeasurement>&
|
||||
range_measurements);
|
||||
|
||||
private:
|
||||
using KeyType = std::bitset<3 * 32>;
|
||||
|
||||
static KeyType IndexToKey(const Eigen::Array3i& index);
|
||||
|
||||
Eigen::Array3i GetCellIndex(const Eigen::Vector3f& point) const;
|
||||
|
||||
float resolution_;
|
||||
absl::flat_hash_set<KeyType> voxel_set_;
|
||||
};
|
||||
PointCloud VoxelFilter(const PointCloud& point_cloud, const float resolution);
|
||||
TimedPointCloud VoxelFilter(const TimedPointCloud& timed_point_cloud,
|
||||
const float resolution);
|
||||
std::vector<sensor::TimedPointCloudOriginData::RangeMeasurement> VoxelFilter(
|
||||
const std::vector<sensor::TimedPointCloudOriginData::RangeMeasurement>&
|
||||
range_measurements,
|
||||
const float resolution);
|
||||
|
||||
proto::AdaptiveVoxelFilterOptions CreateAdaptiveVoxelFilterOptions(
|
||||
common::LuaParameterDictionary* const parameter_dictionary);
|
||||
|
||||
class AdaptiveVoxelFilter {
|
||||
public:
|
||||
explicit AdaptiveVoxelFilter(
|
||||
PointCloud AdaptiveVoxelFilter(
|
||||
const PointCloud& point_cloud,
|
||||
const proto::AdaptiveVoxelFilterOptions& options);
|
||||
|
||||
AdaptiveVoxelFilter(const AdaptiveVoxelFilter&) = delete;
|
||||
AdaptiveVoxelFilter& operator=(const AdaptiveVoxelFilter&) = delete;
|
||||
|
||||
PointCloud Filter(const PointCloud& point_cloud) const;
|
||||
|
||||
private:
|
||||
const proto::AdaptiveVoxelFilterOptions options_;
|
||||
};
|
||||
|
||||
} // namespace sensor
|
||||
} // namespace cartographer
|
||||
|
||||
|
|
|
@ -24,33 +24,38 @@ namespace cartographer {
|
|||
namespace sensor {
|
||||
namespace {
|
||||
|
||||
using ::testing::ContainerEq;
|
||||
using ::testing::Contains;
|
||||
|
||||
TEST(VoxelFilterTest, ReturnsTheFirstPointInEachVoxel) {
|
||||
PointCloud point_cloud = {{Eigen::Vector3f{0.f, 0.f, 0.f}},
|
||||
{Eigen::Vector3f{0.1f, -0.1f, 0.1f}},
|
||||
{Eigen::Vector3f{0.3f, -0.1f, 0.f}},
|
||||
{Eigen::Vector3f{0.f, 0.f, 0.1f}}};
|
||||
EXPECT_THAT(VoxelFilter(0.3f).Filter(point_cloud),
|
||||
ContainerEq(PointCloud{point_cloud[0], point_cloud[2]}));
|
||||
TEST(VoxelFilterTest, ReturnsOnePointInEachVoxel) {
|
||||
const PointCloud point_cloud({{{0.f, 0.f, 0.f}},
|
||||
{{0.1f, -0.1f, 0.1f}},
|
||||
{{0.3f, -0.1f, 0.f}},
|
||||
{{0.f, 0.f, 0.1f}}});
|
||||
const PointCloud result = VoxelFilter(point_cloud, 0.3f);
|
||||
ASSERT_EQ(result.size(), 2);
|
||||
EXPECT_THAT(point_cloud, Contains(result[0]));
|
||||
EXPECT_THAT(point_cloud, Contains(result[1]));
|
||||
EXPECT_THAT(result, Contains(point_cloud[2]));
|
||||
}
|
||||
|
||||
TEST(VoxelFilterTest, HandlesLargeCoordinates) {
|
||||
PointCloud point_cloud = {{Eigen::Vector3f{100000.f, 0.f, 0.f}},
|
||||
{Eigen::Vector3f{100000.001f, -0.0001f, 0.0001f}},
|
||||
{Eigen::Vector3f{100000.003f, -0.0001f, 0.f}},
|
||||
{Eigen::Vector3f{-200000.f, 0.f, 0.f}}};
|
||||
EXPECT_THAT(VoxelFilter(0.01f).Filter(point_cloud),
|
||||
ContainerEq(PointCloud{point_cloud[0], point_cloud[3]}));
|
||||
const PointCloud point_cloud({{{100000.f, 0.f, 0.f}},
|
||||
{{100000.001f, -0.0001f, 0.0001f}},
|
||||
{{100000.003f, -0.0001f, 0.f}},
|
||||
{{-200000.f, 0.f, 0.f}}});
|
||||
const PointCloud result = VoxelFilter(point_cloud, 0.01f);
|
||||
EXPECT_EQ(result.size(), 2);
|
||||
EXPECT_THAT(result, Contains(point_cloud[3]));
|
||||
}
|
||||
|
||||
TEST(VoxelFilterTest, IgnoresTime) {
|
||||
TimedPointCloud timed_point_cloud;
|
||||
for (int i = 0; i < 100; ++i) {
|
||||
timed_point_cloud.push_back({Eigen::Vector3f{-100.f, 0.3f, 0.4f}, 1.f * i});
|
||||
timed_point_cloud.push_back({{-100.f, 0.3f, 0.4f}, 1.f * i});
|
||||
}
|
||||
EXPECT_THAT(VoxelFilter(0.3f).Filter(timed_point_cloud),
|
||||
ContainerEq(TimedPointCloud{timed_point_cloud[0]}));
|
||||
const TimedPointCloud result = VoxelFilter(timed_point_cloud, 0.3f);
|
||||
ASSERT_EQ(result.size(), 1);
|
||||
EXPECT_THAT(timed_point_cloud, Contains(result[0]));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
|
Loading…
Reference in New Issue