Check if filtered point clouds are empty. (#664)

The point cloud will be filtered by MaxRangeFilter before doing scan matching. For some special cases, the filtered point cloud maybe empty, it will cause crash:
real_time_correlative_scan_matcher.cc:159 Check failed: candidate.score > 0.f (nan vs. 0) 
This PR fixed this bug, check the point cloud size before scan matching, return false for empty point cloud.
master
jie 2017-11-16 00:56:01 -08:00 committed by Wally B. Feed
parent b2e948d8a2
commit a08a370ef3
3 changed files with 29 additions and 14 deletions

View File

@ -48,10 +48,9 @@ sensor::RangeData LocalTrajectoryBuilder::TransformAndFilterRangeData(
sensor::VoxelFiltered(cropped.misses, options_.voxel_filter_size())};
}
void LocalTrajectoryBuilder::ScanMatch(
std::unique_ptr<transform::Rigid2d> LocalTrajectoryBuilder::ScanMatch(
const common::Time time, const transform::Rigid2d& pose_prediction,
const sensor::RangeData& gravity_aligned_range_data,
transform::Rigid2d* const pose_observation) {
const sensor::RangeData& gravity_aligned_range_data) {
std::shared_ptr<const Submap> matching_submap =
active_submaps_.submaps().front();
// The online correlative scan matcher will refine the initial estimate for
@ -61,16 +60,21 @@ void LocalTrajectoryBuilder::ScanMatch(
options_.adaptive_voxel_filter_options());
const sensor::PointCloud filtered_gravity_aligned_point_cloud =
adaptive_voxel_filter.Filter(gravity_aligned_range_data.returns);
if (filtered_gravity_aligned_point_cloud.empty()) {
return nullptr;
}
if (options_.use_online_correlative_scan_matching()) {
real_time_correlative_scan_matcher_.Match(
pose_prediction, filtered_gravity_aligned_point_cloud,
matching_submap->probability_grid(), &initial_ceres_pose);
}
auto pose_observation = common::make_unique<transform::Rigid2d>();
ceres::Solver::Summary summary;
ceres_scan_matcher_.Match(
pose_prediction, initial_ceres_pose, filtered_gravity_aligned_point_cloud,
matching_submap->probability_grid(), pose_observation, &summary);
matching_submap->probability_grid(), pose_observation.get(), &summary);
return pose_observation;
}
std::unique_ptr<LocalTrajectoryBuilder::MatchingResult>
@ -149,16 +153,19 @@ LocalTrajectoryBuilder::AddAccumulatedRangeData(
non_gravity_aligned_pose_prediction * gravity_alignment.inverse());
// local map frame <- gravity-aligned frame
transform::Rigid2d pose_estimate_2d;
ScanMatch(time, pose_prediction, gravity_aligned_range_data,
&pose_estimate_2d);
std::unique_ptr<transform::Rigid2d> pose_estimate_2d =
ScanMatch(time, pose_prediction, gravity_aligned_range_data);
if (pose_estimate_2d == nullptr) {
LOG(WARNING) << "Scan matching failed.";
return nullptr;
}
const transform::Rigid3d pose_estimate =
transform::Embed3D(pose_estimate_2d) * gravity_alignment;
transform::Embed3D(*pose_estimate_2d) * gravity_alignment;
extrapolator_->AddPose(time, pose_estimate);
sensor::RangeData range_data_in_local =
TransformRangeData(gravity_aligned_range_data,
transform::Embed3D(pose_estimate_2d.cast<float>()));
transform::Embed3D(pose_estimate_2d->cast<float>()));
last_pose_estimate_ = {time, pose_estimate, range_data_in_local.returns};
std::unique_ptr<InsertionResult> insertion_result =
InsertIntoSubmap(time, range_data_in_local, gravity_aligned_range_data,

View File

@ -83,11 +83,11 @@ class LocalTrajectoryBuilder {
const transform::Rigid3d& pose_estimate,
const Eigen::Quaterniond& gravity_alignment);
// Scan matches 'gravity_aligned_range_data' and fill in the
// 'pose_observation' with the result.
void ScanMatch(common::Time time, const transform::Rigid2d& pose_prediction,
const sensor::RangeData& gravity_aligned_range_data,
transform::Rigid2d* pose_observation);
// Scan matches 'gravity_aligned_range_data' and returns the observed pose,
// or nullptr on failure.
std::unique_ptr<transform::Rigid2d> ScanMatch(
common::Time time, const transform::Rigid2d& pose_prediction,
const sensor::RangeData& gravity_aligned_range_data);
// Lazily constructs a PoseExtrapolator.
void InitializeExtrapolator(common::Time time);

View File

@ -133,6 +133,10 @@ LocalTrajectoryBuilder::AddAccumulatedRangeData(
options_.high_resolution_adaptive_voxel_filter_options());
const sensor::PointCloud high_resolution_point_cloud_in_tracking =
adaptive_voxel_filter.Filter(filtered_range_data_in_tracking.returns);
if (high_resolution_point_cloud_in_tracking.empty()) {
LOG(WARNING) << "Dropped empty high resolution point cloud data.";
return nullptr;
}
if (options_.use_online_correlative_scan_matching()) {
// We take a copy since we use 'initial_ceres_pose' as an output argument.
const transform::Rigid3d initial_pose = initial_ceres_pose;
@ -149,6 +153,10 @@ LocalTrajectoryBuilder::AddAccumulatedRangeData(
const sensor::PointCloud low_resolution_point_cloud_in_tracking =
low_resolution_adaptive_voxel_filter.Filter(
filtered_range_data_in_tracking.returns);
if (low_resolution_point_cloud_in_tracking.empty()) {
LOG(WARNING) << "Dropped empty low resolution point cloud data.";
return nullptr;
}
ceres_scan_matcher_->Match(
matching_submap->local_pose().inverse() * pose_prediction,
initial_ceres_pose,