Also use vector<map<>> for node data in 3D. (#516)
This reduces the difference between 2D and 3D and moves 3D towards localization and trimming.master
parent
35aa38f73f
commit
84da6d75bc
|
@ -229,10 +229,9 @@ void SparsePoseGraph::ComputeConstraintsForOldScans(
|
||||||
const auto& node_data = optimization_problem_.node_data();
|
const auto& node_data = optimization_problem_.node_data();
|
||||||
for (size_t trajectory_id = 0; trajectory_id != node_data.size();
|
for (size_t trajectory_id = 0; trajectory_id != node_data.size();
|
||||||
++trajectory_id) {
|
++trajectory_id) {
|
||||||
for (size_t node_index = 0; node_index != node_data[trajectory_id].size();
|
for (const auto& index_node_data : node_data[trajectory_id]) {
|
||||||
++node_index) {
|
|
||||||
const mapping::NodeId node_id{static_cast<int>(trajectory_id),
|
const mapping::NodeId node_id{static_cast<int>(trajectory_id),
|
||||||
static_cast<int>(node_index)};
|
index_node_data.first};
|
||||||
if (submap_data.node_ids.count(node_id) == 0) {
|
if (submap_data.node_ids.count(node_id) == 0) {
|
||||||
ComputeConstraint(node_id, submap_id);
|
ComputeConstraint(node_id, submap_id);
|
||||||
}
|
}
|
||||||
|
@ -257,10 +256,14 @@ void SparsePoseGraph::ComputeConstraintsForScan(
|
||||||
const mapping::NodeId node_id{
|
const mapping::NodeId node_id{
|
||||||
matching_id.trajectory_id,
|
matching_id.trajectory_id,
|
||||||
static_cast<size_t>(matching_id.trajectory_id) <
|
static_cast<size_t>(matching_id.trajectory_id) <
|
||||||
optimization_problem_.node_data().size()
|
optimization_problem_.node_data().size() &&
|
||||||
|
!optimization_problem_.node_data()[matching_id.trajectory_id]
|
||||||
|
.empty()
|
||||||
? static_cast<int>(optimization_problem_.node_data()
|
? static_cast<int>(optimization_problem_.node_data()
|
||||||
.at(matching_id.trajectory_id)
|
.at(matching_id.trajectory_id)
|
||||||
.size())
|
.rbegin()
|
||||||
|
->first +
|
||||||
|
1)
|
||||||
: 0};
|
: 0};
|
||||||
const auto& scan_data = trajectory_nodes_.at(node_id).constant_data;
|
const auto& scan_data = trajectory_nodes_.at(node_id).constant_data;
|
||||||
optimization_problem_.AddTrajectoryNode(
|
optimization_problem_.AddTrajectoryNode(
|
||||||
|
@ -484,13 +487,10 @@ void SparsePoseGraph::RunOptimization() {
|
||||||
const auto& node_data = optimization_problem_.node_data();
|
const auto& node_data = optimization_problem_.node_data();
|
||||||
for (int trajectory_id = 0;
|
for (int trajectory_id = 0;
|
||||||
trajectory_id != static_cast<int>(node_data.size()); ++trajectory_id) {
|
trajectory_id != static_cast<int>(node_data.size()); ++trajectory_id) {
|
||||||
int node_index = 0;
|
|
||||||
const int num_nodes = trajectory_nodes_.num_indices(trajectory_id);
|
const int num_nodes = trajectory_nodes_.num_indices(trajectory_id);
|
||||||
for (; node_index != static_cast<int>(node_data[trajectory_id].size());
|
for (const auto& node_data_index : node_data.at(trajectory_id)) {
|
||||||
++node_index) {
|
const mapping::NodeId node_id{trajectory_id, node_data_index.first};
|
||||||
const mapping::NodeId node_id{trajectory_id, node_index};
|
trajectory_nodes_.at(node_id).pose = node_data_index.second.pose;
|
||||||
trajectory_nodes_.at(node_id).pose =
|
|
||||||
node_data[trajectory_id][node_index].pose;
|
|
||||||
}
|
}
|
||||||
// Extrapolate all point cloud poses that were added later.
|
// Extrapolate all point cloud poses that were added later.
|
||||||
const auto local_to_new_global =
|
const auto local_to_new_global =
|
||||||
|
@ -499,10 +499,15 @@ void SparsePoseGraph::RunOptimization() {
|
||||||
optimized_submap_transforms_, trajectory_id);
|
optimized_submap_transforms_, trajectory_id);
|
||||||
const transform::Rigid3d old_global_to_new_global =
|
const transform::Rigid3d old_global_to_new_global =
|
||||||
local_to_new_global * local_to_old_global.inverse();
|
local_to_new_global * local_to_old_global.inverse();
|
||||||
for (; node_index < num_nodes; ++node_index) {
|
int last_optimized_node_index =
|
||||||
|
node_data.at(trajectory_id).empty()
|
||||||
|
? 0
|
||||||
|
: node_data.at(trajectory_id).rbegin()->first;
|
||||||
|
for (int node_index = last_optimized_node_index + 1; node_index < num_nodes;
|
||||||
|
++node_index) {
|
||||||
const mapping::NodeId node_id{trajectory_id, node_index};
|
const mapping::NodeId node_id{trajectory_id, node_index};
|
||||||
trajectory_nodes_.at(node_id).pose =
|
auto& node_pose = trajectory_nodes_.at(node_id).pose;
|
||||||
old_global_to_new_global * trajectory_nodes_.at(node_id).pose;
|
node_pose = old_global_to_new_global * node_pose;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
optimized_submap_transforms_ = submap_data;
|
optimized_submap_transforms_ = submap_data;
|
||||||
|
|
|
@ -86,7 +86,11 @@ void OptimizationProblem::AddTrajectoryNode(
|
||||||
CHECK_GE(trajectory_id, 0);
|
CHECK_GE(trajectory_id, 0);
|
||||||
node_data_.resize(
|
node_data_.resize(
|
||||||
std::max(node_data_.size(), static_cast<size_t>(trajectory_id) + 1));
|
std::max(node_data_.size(), static_cast<size_t>(trajectory_id) + 1));
|
||||||
node_data_[trajectory_id].push_back(NodeData{time, initial_pose, pose});
|
trajectory_data_.resize(std::max(trajectory_data_.size(), node_data_.size()));
|
||||||
|
auto& trajectory_data = trajectory_data_[trajectory_id];
|
||||||
|
node_data_[trajectory_id].emplace(trajectory_data.next_node_index,
|
||||||
|
NodeData{time, initial_pose, pose});
|
||||||
|
++trajectory_data.next_node_index;
|
||||||
}
|
}
|
||||||
|
|
||||||
void OptimizationProblem::AddSubmap(const int trajectory_id,
|
void OptimizationProblem::AddSubmap(const int trajectory_id,
|
||||||
|
@ -130,7 +134,7 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
|
||||||
CHECK(!submap_data_[0].empty());
|
CHECK(!submap_data_[0].empty());
|
||||||
// TODO(hrapp): Move ceres data into SubmapData.
|
// TODO(hrapp): Move ceres data into SubmapData.
|
||||||
std::vector<std::map<int, CeresPose>> C_submaps(submap_data_.size());
|
std::vector<std::map<int, CeresPose>> C_submaps(submap_data_.size());
|
||||||
std::vector<std::deque<CeresPose>> C_nodes(node_data_.size());
|
std::vector<std::map<int, CeresPose>> C_nodes(node_data_.size());
|
||||||
bool first_submap = true;
|
bool first_submap = true;
|
||||||
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
|
for (size_t trajectory_id = 0; trajectory_id != submap_data_.size();
|
||||||
++trajectory_id) {
|
++trajectory_id) {
|
||||||
|
@ -169,17 +173,19 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
|
||||||
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
|
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
|
||||||
++trajectory_id) {
|
++trajectory_id) {
|
||||||
const bool frozen = frozen_trajectories.count(trajectory_id);
|
const bool frozen = frozen_trajectories.count(trajectory_id);
|
||||||
for (size_t node_index = 0; node_index != node_data_[trajectory_id].size();
|
for (const auto& index_node_data : node_data_[trajectory_id]) {
|
||||||
++node_index) {
|
const int node_index = index_node_data.first;
|
||||||
C_nodes[trajectory_id].emplace_back(
|
C_nodes[trajectory_id].emplace(
|
||||||
node_data_[trajectory_id][node_index].pose,
|
std::piecewise_construct, std::forward_as_tuple(node_index),
|
||||||
translation_parameterization(),
|
std::forward_as_tuple(
|
||||||
common::make_unique<ceres::QuaternionParameterization>(), &problem);
|
index_node_data.second.pose, translation_parameterization(),
|
||||||
|
common::make_unique<ceres::QuaternionParameterization>(),
|
||||||
|
&problem));
|
||||||
if (frozen) {
|
if (frozen) {
|
||||||
problem.SetParameterBlockConstant(
|
problem.SetParameterBlockConstant(
|
||||||
C_nodes[trajectory_id].back().rotation());
|
C_nodes[trajectory_id].at(node_index).rotation());
|
||||||
problem.SetParameterBlockConstant(
|
problem.SetParameterBlockConstant(
|
||||||
C_nodes[trajectory_id].back().translation());
|
C_nodes[trajectory_id].at(node_index).translation());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -212,8 +218,7 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
|
||||||
CHECK_GE(trajectory_data_.size(), node_data_.size());
|
CHECK_GE(trajectory_data_.size(), node_data_.size());
|
||||||
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
|
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
|
||||||
++trajectory_id) {
|
++trajectory_id) {
|
||||||
const auto& node_data = node_data_[trajectory_id];
|
if (node_data_[trajectory_id].empty()) {
|
||||||
if (node_data.empty()) {
|
|
||||||
// We skip empty trajectories which might not have any IMU data.
|
// We skip empty trajectories which might not have any IMU data.
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
@ -223,29 +228,47 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
|
||||||
const std::deque<sensor::ImuData>& imu_data = imu_data_.at(trajectory_id);
|
const std::deque<sensor::ImuData>& imu_data = imu_data_.at(trajectory_id);
|
||||||
CHECK(!imu_data.empty());
|
CHECK(!imu_data.empty());
|
||||||
|
|
||||||
// Skip IMU data before the first node of this trajectory.
|
auto imu_it = imu_data.cbegin();
|
||||||
auto it = imu_data.cbegin();
|
for (auto node_it = node_data_[trajectory_id].begin();;) {
|
||||||
while ((it + 1) != imu_data.cend() && (it + 1)->time <= node_data[0].time) {
|
const int first_node_index = node_it->first;
|
||||||
++it;
|
const NodeData& first_node_data = node_it->second;
|
||||||
}
|
++node_it;
|
||||||
|
if (node_it == node_data_[trajectory_id].end()) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
for (size_t node_index = 1; node_index < node_data.size(); ++node_index) {
|
const int second_node_index = node_it->first;
|
||||||
auto it2 = it;
|
const NodeData& second_node_data = node_it->second;
|
||||||
const IntegrateImuResult<double> result =
|
|
||||||
IntegrateImu(imu_data, node_data[node_index - 1].time,
|
if (second_node_index != first_node_index + 1) {
|
||||||
node_data[node_index].time, &it);
|
continue;
|
||||||
if (node_index + 1 < node_data.size()) {
|
}
|
||||||
const common::Time first_time = node_data[node_index - 1].time;
|
|
||||||
const common::Time second_time = node_data[node_index].time;
|
// Skip IMU data before the node.
|
||||||
const common::Time third_time = node_data[node_index + 1].time;
|
while ((imu_it + 1) != imu_data.cend() &&
|
||||||
|
(imu_it + 1)->time <= first_node_data.time) {
|
||||||
|
++imu_it;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto imu_it2 = imu_it;
|
||||||
|
const IntegrateImuResult<double> result = IntegrateImu(
|
||||||
|
imu_data, first_node_data.time, second_node_data.time, &imu_it);
|
||||||
|
const auto next_node_it = std::next(node_it);
|
||||||
|
if (next_node_it != node_data_[trajectory_id].end() &&
|
||||||
|
next_node_it->first == second_node_index + 1) {
|
||||||
|
const int third_node_index = next_node_it->first;
|
||||||
|
const NodeData& third_node_data = next_node_it->second;
|
||||||
|
const common::Time first_time = first_node_data.time;
|
||||||
|
const common::Time second_time = second_node_data.time;
|
||||||
|
const common::Time third_time = third_node_data.time;
|
||||||
const common::Duration first_duration = second_time - first_time;
|
const common::Duration first_duration = second_time - first_time;
|
||||||
const common::Duration second_duration = third_time - second_time;
|
const common::Duration second_duration = third_time - second_time;
|
||||||
const common::Time first_center = first_time + first_duration / 2;
|
const common::Time first_center = first_time + first_duration / 2;
|
||||||
const common::Time second_center = second_time + second_duration / 2;
|
const common::Time second_center = second_time + second_duration / 2;
|
||||||
const IntegrateImuResult<double> result_to_first_center =
|
const IntegrateImuResult<double> result_to_first_center =
|
||||||
IntegrateImu(imu_data, first_time, first_center, &it2);
|
IntegrateImu(imu_data, first_time, first_center, &imu_it2);
|
||||||
const IntegrateImuResult<double> result_center_to_center =
|
const IntegrateImuResult<double> result_center_to_center =
|
||||||
IntegrateImu(imu_data, first_center, second_center, &it2);
|
IntegrateImu(imu_data, first_center, second_center, &imu_it2);
|
||||||
// 'delta_velocity' is the change in velocity from the point in time
|
// 'delta_velocity' is the change in velocity from the point in time
|
||||||
// halfway between the first and second poses to halfway between second
|
// halfway between the first and second poses to halfway between second
|
||||||
// and third pose. It is computed from IMU data and still contains a
|
// and third pose. It is computed from IMU data and still contains a
|
||||||
|
@ -262,10 +285,10 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
|
||||||
options_.acceleration_weight(), delta_velocity,
|
options_.acceleration_weight(), delta_velocity,
|
||||||
common::ToSeconds(first_duration),
|
common::ToSeconds(first_duration),
|
||||||
common::ToSeconds(second_duration))),
|
common::ToSeconds(second_duration))),
|
||||||
nullptr, C_nodes[trajectory_id].at(node_index).rotation(),
|
nullptr, C_nodes[trajectory_id].at(second_node_index).rotation(),
|
||||||
C_nodes[trajectory_id].at(node_index - 1).translation(),
|
C_nodes[trajectory_id].at(first_node_index).translation(),
|
||||||
C_nodes[trajectory_id].at(node_index).translation(),
|
C_nodes[trajectory_id].at(second_node_index).translation(),
|
||||||
C_nodes[trajectory_id].at(node_index + 1).translation(),
|
C_nodes[trajectory_id].at(third_node_index).translation(),
|
||||||
&trajectory_data.gravity_constant,
|
&trajectory_data.gravity_constant,
|
||||||
trajectory_data.imu_calibration.data());
|
trajectory_data.imu_calibration.data());
|
||||||
}
|
}
|
||||||
|
@ -273,8 +296,8 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
|
||||||
new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4, 4>(
|
new ceres::AutoDiffCostFunction<RotationCostFunction, 3, 4, 4, 4>(
|
||||||
new RotationCostFunction(options_.rotation_weight(),
|
new RotationCostFunction(options_.rotation_weight(),
|
||||||
result.delta_rotation)),
|
result.delta_rotation)),
|
||||||
nullptr, C_nodes[trajectory_id].at(node_index - 1).rotation(),
|
nullptr, C_nodes[trajectory_id].at(first_node_index).rotation(),
|
||||||
C_nodes[trajectory_id].at(node_index).rotation(),
|
C_nodes[trajectory_id].at(second_node_index).rotation(),
|
||||||
trajectory_data.imu_calibration.data());
|
trajectory_data.imu_calibration.data());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -289,22 +312,21 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
|
||||||
|
|
||||||
bool fixed_frame_pose_initialized = false;
|
bool fixed_frame_pose_initialized = false;
|
||||||
|
|
||||||
const auto& node_data = node_data_[trajectory_id];
|
for (auto& index_node_data : node_data_[trajectory_id]) {
|
||||||
for (size_t node_index = 0; node_index < node_data.size(); ++node_index) {
|
const int node_index = index_node_data.first;
|
||||||
if (!fixed_frame_pose_data_.at(trajectory_id)
|
const NodeData& node_data = index_node_data.second;
|
||||||
.Has(node_data[node_index].time)) {
|
if (!fixed_frame_pose_data_.at(trajectory_id).Has(node_data.time)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
const mapping::SparsePoseGraph::Constraint::Pose constraint_pose{
|
const mapping::SparsePoseGraph::Constraint::Pose constraint_pose{
|
||||||
fixed_frame_pose_data_.at(trajectory_id)
|
fixed_frame_pose_data_.at(trajectory_id).Lookup(node_data.time),
|
||||||
.Lookup(node_data[node_index].time),
|
|
||||||
options_.fixed_frame_pose_translation_weight(),
|
options_.fixed_frame_pose_translation_weight(),
|
||||||
options_.fixed_frame_pose_rotation_weight()};
|
options_.fixed_frame_pose_rotation_weight()};
|
||||||
|
|
||||||
if (!fixed_frame_pose_initialized) {
|
if (!fixed_frame_pose_initialized) {
|
||||||
const transform::Rigid3d fixed_frame_pose_in_map =
|
const transform::Rigid3d fixed_frame_pose_in_map =
|
||||||
node_data[node_index].pose * constraint_pose.zbar_ij.inverse();
|
node_data.pose * constraint_pose.zbar_ij.inverse();
|
||||||
C_fixed_frames.emplace_back(
|
C_fixed_frames.emplace_back(
|
||||||
transform::Rigid3d(
|
transform::Rigid3d(
|
||||||
fixed_frame_pose_in_map.translation(),
|
fixed_frame_pose_in_map.translation(),
|
||||||
|
@ -362,15 +384,14 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
|
||||||
}
|
}
|
||||||
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
|
for (size_t trajectory_id = 0; trajectory_id != node_data_.size();
|
||||||
++trajectory_id) {
|
++trajectory_id) {
|
||||||
for (size_t node_index = 0; node_index != node_data_[trajectory_id].size();
|
for (auto& index_node_data : node_data_[trajectory_id]) {
|
||||||
++node_index) {
|
index_node_data.second.pose =
|
||||||
node_data_[trajectory_id][node_index].pose =
|
C_nodes[trajectory_id].at(index_node_data.first).ToRigid();
|
||||||
C_nodes[trajectory_id][node_index].ToRigid();
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const std::vector<std::vector<NodeData>>& OptimizationProblem::node_data()
|
const std::vector<std::map<int, NodeData>>& OptimizationProblem::node_data()
|
||||||
const {
|
const {
|
||||||
return node_data_;
|
return node_data_;
|
||||||
}
|
}
|
||||||
|
|
|
@ -81,7 +81,7 @@ class OptimizationProblem {
|
||||||
void Solve(const std::vector<Constraint>& constraints,
|
void Solve(const std::vector<Constraint>& constraints,
|
||||||
const std::set<int>& frozen_trajectories);
|
const std::set<int>& frozen_trajectories);
|
||||||
|
|
||||||
const std::vector<std::vector<NodeData>>& node_data() const;
|
const std::vector<std::map<int, NodeData>>& node_data() const;
|
||||||
const std::vector<std::map<int, SubmapData>>& submap_data() const;
|
const std::vector<std::map<int, SubmapData>>& submap_data() const;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
@ -89,12 +89,13 @@ class OptimizationProblem {
|
||||||
double gravity_constant = 9.8;
|
double gravity_constant = 9.8;
|
||||||
std::array<double, 4> imu_calibration{{1., 0., 0., 0.}};
|
std::array<double, 4> imu_calibration{{1., 0., 0., 0.}};
|
||||||
int next_submap_index = 0;
|
int next_submap_index = 0;
|
||||||
|
int next_node_index = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
mapping::sparse_pose_graph::proto::OptimizationProblemOptions options_;
|
mapping::sparse_pose_graph::proto::OptimizationProblemOptions options_;
|
||||||
FixZ fix_z_;
|
FixZ fix_z_;
|
||||||
std::vector<std::deque<sensor::ImuData>> imu_data_;
|
std::vector<std::deque<sensor::ImuData>> imu_data_;
|
||||||
std::vector<std::vector<NodeData>> node_data_;
|
std::vector<std::map<int, NodeData>> node_data_;
|
||||||
std::vector<transform::TransformInterpolationBuffer> odometry_data_;
|
std::vector<transform::TransformInterpolationBuffer> odometry_data_;
|
||||||
std::vector<std::map<int, SubmapData>> submap_data_;
|
std::vector<std::map<int, SubmapData>> submap_data_;
|
||||||
std::vector<TrajectoryData> trajectory_data_;
|
std::vector<TrajectoryData> trajectory_data_;
|
||||||
|
|
|
@ -159,10 +159,10 @@ TEST_F(OptimizationProblemTest, ReducesNoise) {
|
||||||
const auto& node_data = optimization_problem_.node_data().at(0);
|
const auto& node_data = optimization_problem_.node_data().at(0);
|
||||||
for (int j = 0; j != kNumNodes; ++j) {
|
for (int j = 0; j != kNumNodes; ++j) {
|
||||||
translation_error_before += (test_data[j].ground_truth_pose.translation() -
|
translation_error_before += (test_data[j].ground_truth_pose.translation() -
|
||||||
node_data[j].pose.translation())
|
node_data.at(j).pose.translation())
|
||||||
.norm();
|
.norm();
|
||||||
rotation_error_before += transform::GetAngle(
|
rotation_error_before += transform::GetAngle(
|
||||||
test_data[j].ground_truth_pose.inverse() * node_data[j].pose);
|
test_data[j].ground_truth_pose.inverse() * node_data.at(j).pose);
|
||||||
}
|
}
|
||||||
|
|
||||||
optimization_problem_.AddSubmap(kTrajectoryId, kSubmap0Transform);
|
optimization_problem_.AddSubmap(kTrajectoryId, kSubmap0Transform);
|
||||||
|
@ -175,10 +175,10 @@ TEST_F(OptimizationProblemTest, ReducesNoise) {
|
||||||
double rotation_error_after = 0.;
|
double rotation_error_after = 0.;
|
||||||
for (int j = 0; j != kNumNodes; ++j) {
|
for (int j = 0; j != kNumNodes; ++j) {
|
||||||
translation_error_after += (test_data[j].ground_truth_pose.translation() -
|
translation_error_after += (test_data[j].ground_truth_pose.translation() -
|
||||||
node_data[j].pose.translation())
|
node_data.at(j).pose.translation())
|
||||||
.norm();
|
.norm();
|
||||||
rotation_error_after += transform::GetAngle(
|
rotation_error_after += transform::GetAngle(
|
||||||
test_data[j].ground_truth_pose.inverse() * node_data[j].pose);
|
test_data[j].ground_truth_pose.inverse() * node_data.at(j).pose);
|
||||||
}
|
}
|
||||||
|
|
||||||
EXPECT_GT(0.8 * translation_error_before, translation_error_after);
|
EXPECT_GT(0.8 * translation_error_before, translation_error_after);
|
||||||
|
|
Loading…
Reference in New Issue