Fined-grained locking for PoseGraph3D constraints (#1279)

When preparing constraints make holding of the PoseGraph3D
mutex fine-grained to address lock contention from issue #1250.
That includes not holding the mutex when acquring the constraint
builder mutex.
master
danielsievers 2018-07-14 09:27:07 +02:00 committed by Wally B. Feed
parent d4376e765b
commit 7b48b66a65
2 changed files with 111 additions and 96 deletions

View File

@ -245,8 +245,6 @@ void PoseGraph3D::AddLandmarkData(int trajectory_id,
void PoseGraph3D::ComputeConstraint(const NodeId& node_id, void PoseGraph3D::ComputeConstraint(const NodeId& node_id,
const SubmapId& submap_id) { const SubmapId& submap_id) {
CHECK(data_.submap_data.at(submap_id).state == SubmapState::kFinished);
const transform::Rigid3d global_node_pose = const transform::Rigid3d global_node_pose =
optimization_problem_->node_data().at(node_id).global_pose; optimization_problem_->node_data().at(node_id).global_pose;
@ -256,57 +254,58 @@ void PoseGraph3D::ComputeConstraint(const NodeId& node_id,
const transform::Rigid3d global_submap_pose_inverse = const transform::Rigid3d global_submap_pose_inverse =
global_submap_pose.inverse(); global_submap_pose.inverse();
bool maybe_add_local_constraint = false;
bool maybe_add_global_constraint = false;
const TrajectoryNode::Data* constant_data;
const Submap3D* submap;
std::vector<TrajectoryNode> submap_nodes; std::vector<TrajectoryNode> submap_nodes;
for (const NodeId& submap_node_id : {
data_.submap_data.at(submap_id).node_ids) { common::MutexLocker locker(&mutex_);
submap_nodes.push_back(TrajectoryNode{ CHECK(data_.submap_data.at(submap_id).state == SubmapState::kFinished);
data_.trajectory_nodes.at(submap_node_id).constant_data,
global_submap_pose_inverse *
data_.trajectory_nodes.at(submap_node_id).global_pose});
}
const common::Time node_time = GetLatestNodeTime(node_id, submap_id); for (const NodeId& submap_node_id :
const common::Time last_connection_time = data_.submap_data.at(submap_id).node_ids) {
data_.trajectory_connectivity_state.LastConnectionTime( submap_nodes.push_back(TrajectoryNode{
node_id.trajectory_id, submap_id.trajectory_id); data_.trajectory_nodes.at(submap_node_id).constant_data,
if (node_id.trajectory_id == submap_id.trajectory_id || global_submap_pose_inverse *
node_time < data_.trajectory_nodes.at(submap_node_id).global_pose});
last_connection_time +
common::FromSeconds(
options_.global_constraint_search_after_n_seconds())) {
// If the node and the submap belong to the same trajectory or if there has
// been a recent global constraint that ties that node's trajectory to the
// submap's trajectory, it suffices to do a match constrained to a local
// search window.
constraint_builder_.MaybeAddConstraint(
submap_id,
static_cast<const Submap3D*>(
data_.submap_data.at(submap_id).submap.get()),
node_id, data_.trajectory_nodes.at(node_id).constant_data.get(),
submap_nodes, global_node_pose, global_submap_pose);
} else if (global_localization_samplers_[node_id.trajectory_id]->Pulse()) {
// In this situation, 'global_node_pose' and 'global_submap_pose' have
// orientations agreeing on gravity. Their relationship regarding yaw is
// arbitrary. Finding the correct yaw component will be handled by the
// matching procedure in the FastCorrelativeScanMatcher, and the given yaw
// is essentially ignored.
constraint_builder_.MaybeAddGlobalConstraint(
submap_id,
static_cast<const Submap3D*>(
data_.submap_data.at(submap_id).submap.get()),
node_id, data_.trajectory_nodes.at(node_id).constant_data.get(),
submap_nodes, global_node_pose.rotation(),
global_submap_pose.rotation());
}
}
void PoseGraph3D::ComputeConstraintsForOldNodes(const SubmapId& submap_id) {
const auto& submap_data = data_.submap_data.at(submap_id);
for (const auto& node_id_data : optimization_problem_->node_data()) {
const NodeId& node_id = node_id_data.id;
if (submap_data.node_ids.count(node_id) == 0) {
ComputeConstraint(node_id, submap_id);
} }
const common::Time node_time = GetLatestNodeTime(node_id, submap_id);
const common::Time last_connection_time =
data_.trajectory_connectivity_state.LastConnectionTime(
node_id.trajectory_id, submap_id.trajectory_id);
if (node_id.trajectory_id == submap_id.trajectory_id ||
node_time <
last_connection_time +
common::FromSeconds(
options_.global_constraint_search_after_n_seconds())) {
// If the node and the submap belong to the same trajectory or if there
// has been a recent global constraint that ties that node's trajectory to
// the submap's trajectory, it suffices to do a match constrained to a
// local search window.
maybe_add_local_constraint = true;
} else if (global_localization_samplers_[node_id.trajectory_id]->Pulse()) {
// In this situation, 'global_node_pose' and 'global_submap_pose' have
// orientations agreeing on gravity. Their relationship regarding yaw is
// arbitrary. Finding the correct yaw component will be handled by the
// matching procedure in the FastCorrelativeScanMatcher, and the given yaw
// is essentially ignored.
maybe_add_global_constraint = true;
}
constant_data = data_.trajectory_nodes.at(node_id).constant_data.get();
submap = static_cast<const Submap3D*>(
data_.submap_data.at(submap_id).submap.get());
}
if (maybe_add_local_constraint) {
constraint_builder_.MaybeAddConstraint(
submap_id, submap, node_id, constant_data, submap_nodes,
global_node_pose, global_submap_pose);
} else if (maybe_add_global_constraint) {
constraint_builder_.MaybeAddGlobalConstraint(
submap_id, submap, node_id, constant_data, submap_nodes,
global_node_pose.rotation(), global_submap_pose.rotation());
} }
} }
@ -314,53 +313,73 @@ WorkItem::Result PoseGraph3D::ComputeConstraintsForNode(
const NodeId& node_id, const NodeId& node_id,
std::vector<std::shared_ptr<const Submap3D>> insertion_submaps, std::vector<std::shared_ptr<const Submap3D>> insertion_submaps,
const bool newly_finished_submap) { const bool newly_finished_submap) {
common::MutexLocker locker(&mutex_); std::vector<SubmapId> submap_ids;
const auto& constant_data = data_.trajectory_nodes.at(node_id).constant_data; std::vector<SubmapId> finished_submap_ids;
const std::vector<SubmapId> submap_ids = InitializeGlobalSubmapPoses( std::set<NodeId> newly_finished_submap_node_ids;
node_id.trajectory_id, constant_data->time, insertion_submaps); {
CHECK_EQ(submap_ids.size(), insertion_submaps.size()); common::MutexLocker locker(&mutex_);
const SubmapId matching_id = submap_ids.front(); const auto& constant_data =
const transform::Rigid3d& local_pose = constant_data->local_pose; data_.trajectory_nodes.at(node_id).constant_data;
const transform::Rigid3d global_pose = submap_ids = InitializeGlobalSubmapPoses(
optimization_problem_->submap_data().at(matching_id).global_pose * node_id.trajectory_id, constant_data->time, insertion_submaps);
insertion_submaps.front()->local_pose().inverse() * local_pose; CHECK_EQ(submap_ids.size(), insertion_submaps.size());
optimization_problem_->AddTrajectoryNode( const SubmapId matching_id = submap_ids.front();
matching_id.trajectory_id, const transform::Rigid3d& local_pose = constant_data->local_pose;
optimization::NodeSpec3D{constant_data->time, local_pose, global_pose}); const transform::Rigid3d global_pose =
for (size_t i = 0; i < insertion_submaps.size(); ++i) { optimization_problem_->submap_data().at(matching_id).global_pose *
const SubmapId submap_id = submap_ids[i]; insertion_submaps.front()->local_pose().inverse() * local_pose;
// Even if this was the last node added to 'submap_id', the submap will only optimization_problem_->AddTrajectoryNode(
// be marked as finished in 'data_.submap_data' further below. matching_id.trajectory_id,
CHECK(data_.submap_data.at(submap_id).state == SubmapState::kActive); optimization::NodeSpec3D{constant_data->time, local_pose, global_pose});
data_.submap_data.at(submap_id).node_ids.emplace(node_id); for (size_t i = 0; i < insertion_submaps.size(); ++i) {
const transform::Rigid3d constraint_transform = const SubmapId submap_id = submap_ids[i];
insertion_submaps[i]->local_pose().inverse() * local_pose; // Even if this was the last node added to 'submap_id', the submap will
data_.constraints.push_back( // only be marked as finished in 'data_.submap_data' further below.
Constraint{submap_id, CHECK(data_.submap_data.at(submap_id).state == SubmapState::kActive);
node_id, data_.submap_data.at(submap_id).node_ids.emplace(node_id);
{constraint_transform, options_.matcher_translation_weight(), const transform::Rigid3d constraint_transform =
options_.matcher_rotation_weight()}, insertion_submaps[i]->local_pose().inverse() * local_pose;
Constraint::INTRA_SUBMAP}); data_.constraints.push_back(Constraint{
} submap_id,
node_id,
// TODO(gaschler): Consider not searching for constraints against trajectories {constraint_transform, options_.matcher_translation_weight(),
// scheduled for deletion. options_.matcher_rotation_weight()},
for (const auto& submap_id_data : data_.submap_data) { Constraint::INTRA_SUBMAP});
if (submap_id_data.data.state == SubmapState::kFinished) { }
CHECK_EQ(submap_id_data.data.node_ids.count(node_id), 0); // TODO(gaschler): Consider not searching for constraints against
ComputeConstraint(node_id, submap_id_data.id); // trajectories scheduled for deletion.
// TODO(danielsievers): Add a member variable and avoid having to copy
// them out here.
for (const auto& submap_id_data : data_.submap_data) {
if (submap_id_data.data.state == SubmapState::kFinished) {
CHECK_EQ(submap_id_data.data.node_ids.count(node_id), 0);
finished_submap_ids.emplace_back(submap_id_data.id);
}
}
if (newly_finished_submap) {
const SubmapId newly_finished_submap_id = submap_ids.front();
InternalSubmapData& finished_submap_data =
data_.submap_data.at(newly_finished_submap_id);
CHECK(finished_submap_data.state == SubmapState::kActive);
finished_submap_data.state = SubmapState::kFinished;
newly_finished_submap_node_ids = finished_submap_data.node_ids;
} }
} }
for (const auto& submap_id : finished_submap_ids) {
ComputeConstraint(node_id, submap_id);
}
if (newly_finished_submap) { if (newly_finished_submap) {
const SubmapId finished_submap_id = submap_ids.front(); const SubmapId newly_finished_submap_id = submap_ids.front();
InternalSubmapData& finished_submap_data =
data_.submap_data.at(finished_submap_id);
CHECK(finished_submap_data.state == SubmapState::kActive);
finished_submap_data.state = SubmapState::kFinished;
// We have a new completed submap, so we look into adding constraints for // We have a new completed submap, so we look into adding constraints for
// old nodes. // old nodes.
ComputeConstraintsForOldNodes(finished_submap_id); for (const auto& node_id_data : optimization_problem_->node_data()) {
const NodeId& node_id = node_id_data.id;
if (newly_finished_submap_node_ids.count(node_id) == 0) {
ComputeConstraint(node_id, newly_finished_submap_id);
}
}
} }
constraint_builder_.NotifyEndOfNode(); constraint_builder_.NotifyEndOfNode();
++num_nodes_since_last_loop_closure_; ++num_nodes_since_last_loop_closure_;

View File

@ -189,11 +189,7 @@ class PoseGraph3D : public PoseGraph {
// Computes constraints for a node and submap pair. // Computes constraints for a node and submap pair.
void ComputeConstraint(const NodeId& node_id, const SubmapId& submap_id) void ComputeConstraint(const NodeId& node_id, const SubmapId& submap_id)
REQUIRES(mutex_); EXCLUDES(mutex_);
// Adds constraints for older nodes whenever a new submap is finished.
void ComputeConstraintsForOldNodes(const SubmapId& submap_id)
REQUIRES(mutex_);
// Deletes trajectories waiting for deletion. Must not be called during // Deletes trajectories waiting for deletion. Must not be called during
// constraint search. // constraint search.