Use PoseExtrapolator in the 2D trajectory builder. (#448)

This replaces the Predict() logic in the 2D trajectory builder.
master
Wolfgang Hess 2017-08-11 12:38:34 +02:00 committed by GitHub
parent 6ebfa50291
commit 73b0e5e20a
2 changed files with 37 additions and 114 deletions

View File

@ -31,8 +31,7 @@ LocalTrajectoryBuilder::LocalTrajectoryBuilder(
motion_filter_(options_.motion_filter_options()),
real_time_correlative_scan_matcher_(
options_.real_time_correlative_scan_matcher_options()),
ceres_scan_matcher_(options_.ceres_scan_matcher_options()),
odometry_state_tracker_(options_.num_odometry_states()) {}
ceres_scan_matcher_(options_.ceres_scan_matcher_options()) {}
LocalTrajectoryBuilder::~LocalTrajectoryBuilder() {}
@ -84,27 +83,26 @@ void LocalTrajectoryBuilder::ScanMatch(
std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
LocalTrajectoryBuilder::AddHorizontalRangeData(
const common::Time time, const sensor::RangeData& range_data) {
// Initialize IMU tracker now if we do not ever use an IMU.
// Initialize extrapolator now if we do not ever use an IMU.
if (!options_.use_imu_data()) {
InitializeImuTracker(time);
InitializeExtrapolator(time);
}
if (imu_tracker_ == nullptr) {
// Until we've initialized the IMU tracker with our first IMU message, we
if (extrapolator_ == nullptr) {
// Until we've initialized the extrapolator with our first IMU message, we
// cannot compute the orientation of the rangefinder.
LOG(INFO) << "ImuTracker not yet initialized.";
LOG(INFO) << "Extrapolator not yet initialized.";
return nullptr;
}
Predict(time);
if (num_accumulated_ == 0) {
first_pose_estimate_ = pose_estimate_.cast<float>();
first_pose_estimate_ = extrapolator_->ExtrapolatePose(time).cast<float>();
accumulated_range_data_ =
sensor::RangeData{Eigen::Vector3f::Zero(), {}, {}};
}
const transform::Rigid3f tracking_delta =
first_pose_estimate_.inverse() * pose_estimate_.cast<float>();
first_pose_estimate_.inverse() *
extrapolator_->ExtrapolatePose(time).cast<float>();
const sensor::RangeData range_data_in_first_tracking =
sensor::TransformRangeData(range_data, tracking_delta);
// Drop any returns below the minimum range and convert returns beyond the
@ -136,11 +134,8 @@ LocalTrajectoryBuilder::AddHorizontalRangeData(
std::unique_ptr<LocalTrajectoryBuilder::InsertionResult>
LocalTrajectoryBuilder::AddAccumulatedRangeData(
const common::Time time, const sensor::RangeData& range_data) {
const transform::Rigid3d odometry_prediction =
pose_estimate_ * odometry_correction_;
const transform::Rigid3d model_prediction = pose_estimate_;
// TODO(whess): Prefer IMU over odom orientation if configured?
const transform::Rigid3d& pose_prediction = odometry_prediction;
const transform::Rigid3d pose_prediction =
extrapolator_->ExtrapolatePose(time);
// Computes the rotation without yaw, as defined by GetYaw().
const transform::Rigid3d tracking_to_tracking_2d =
@ -158,40 +153,15 @@ LocalTrajectoryBuilder::AddAccumulatedRangeData(
return nullptr;
}
transform::Rigid3d pose_estimate;
ScanMatch(time, pose_prediction, tracking_to_tracking_2d,
range_data_in_tracking_2d, &pose_estimate_);
odometry_correction_ = transform::Rigid3d::Identity();
if (!odometry_state_tracker_.empty()) {
// We add an odometry state, so that the correction from the scan matching
// is not removed by the next odometry data we get.
odometry_state_tracker_.AddOdometryState(
{time, odometry_state_tracker_.newest().odometer_pose,
odometry_state_tracker_.newest().state_pose *
odometry_prediction.inverse() * pose_estimate_});
}
// Improve the velocity estimate.
if (last_scan_match_time_ > common::Time::min() &&
time > last_scan_match_time_) {
const double delta_t = common::ToSeconds(time - last_scan_match_time_);
// This adds the observed difference in velocity that would have reduced the
// error to zero.
velocity_estimate_ += (pose_estimate_.translation().head<2>() -
model_prediction.translation().head<2>()) /
delta_t;
}
last_scan_match_time_ = time_;
// Remove the untracked z-component which floats around 0 in the UKF.
const auto translation = pose_estimate_.translation();
pose_estimate_ = transform::Rigid3d(
transform::Rigid3d::Vector(translation.x(), translation.y(), 0.),
pose_estimate_.rotation());
range_data_in_tracking_2d, &pose_estimate);
extrapolator_->AddPose(time, pose_estimate);
const transform::Rigid3d tracking_2d_to_map =
pose_estimate_ * tracking_to_tracking_2d.inverse();
pose_estimate * tracking_to_tracking_2d.inverse();
last_pose_estimate_ = {
time, pose_estimate_,
time, pose_estimate,
sensor::TransformPointCloud(range_data_in_tracking_2d.returns,
tracking_2d_to_map.cast<float>())};
@ -223,64 +193,32 @@ LocalTrajectoryBuilder::pose_estimate() const {
void LocalTrajectoryBuilder::AddImuData(const sensor::ImuData& imu_data) {
CHECK(options_.use_imu_data()) << "An unexpected IMU packet was added.";
InitializeImuTracker(imu_data.time);
Predict(imu_data.time);
imu_tracker_->AddImuLinearAccelerationObservation(
imu_data.linear_acceleration);
imu_tracker_->AddImuAngularVelocityObservation(imu_data.angular_velocity);
InitializeExtrapolator(imu_data.time);
extrapolator_->AddImuData(imu_data);
}
void LocalTrajectoryBuilder::AddOdometerData(
const common::Time time, const transform::Rigid3d& odometer_pose) {
if (imu_tracker_ == nullptr) {
// Until we've initialized the IMU tracker we do not want to call Predict().
LOG(INFO) << "ImuTracker not yet initialized.";
if (extrapolator_ == nullptr) {
// Until we've initialized the extrapolator we cannot add odometry data.
LOG(INFO) << "Extrapolator not yet initialized.";
return;
}
Predict(time);
if (!odometry_state_tracker_.empty()) {
const auto& previous_odometry_state = odometry_state_tracker_.newest();
const transform::Rigid3d delta =
previous_odometry_state.odometer_pose.inverse() * odometer_pose;
const transform::Rigid3d new_pose =
previous_odometry_state.state_pose * delta;
odometry_correction_ = pose_estimate_.inverse() * new_pose;
}
odometry_state_tracker_.AddOdometryState(
{time, odometer_pose, pose_estimate_ * odometry_correction_});
extrapolator_->AddOdometryData(sensor::OdometryData{time, odometer_pose});
}
void LocalTrajectoryBuilder::InitializeImuTracker(const common::Time time) {
if (imu_tracker_ == nullptr) {
imu_tracker_ = common::make_unique<mapping::ImuTracker>(
options_.imu_gravity_time_constant(), time);
void LocalTrajectoryBuilder::InitializeExtrapolator(const common::Time time) {
if (extrapolator_ != nullptr) {
return;
}
}
void LocalTrajectoryBuilder::Predict(const common::Time time) {
CHECK(imu_tracker_ != nullptr);
CHECK_LE(time_, time);
const double last_yaw = transform::GetYaw(imu_tracker_->orientation());
imu_tracker_->Advance(time);
if (time_ > common::Time::min()) {
const double delta_t = common::ToSeconds(time - time_);
// Constant velocity model.
const Eigen::Vector3d translation =
pose_estimate_.translation() +
delta_t *
Eigen::Vector3d(velocity_estimate_.x(), velocity_estimate_.y(), 0.);
// Use the current IMU tracker roll and pitch for gravity alignment, and
// apply its change in yaw.
const Eigen::Quaterniond rotation =
Eigen::AngleAxisd(
transform::GetYaw(pose_estimate_.rotation()) - last_yaw,
Eigen::Vector3d::UnitZ()) *
imu_tracker_->orientation();
pose_estimate_ = transform::Rigid3d(translation, rotation);
}
time_ = time;
// We derive velocities from poses which are at least 1 ms apart for numerical
// stability. Usually poses known to the extrapolator will be further apart
// in time and thus the last two are used.
constexpr double kExtrapolationEstimationTimeSec = 0.001;
extrapolator_ = common::make_unique<mapping::PoseExtrapolator>(
::cartographer::common::FromSeconds(kExtrapolationEstimationTimeSec),
options_.imu_gravity_time_constant());
extrapolator_->AddPose(time, transform::Rigid3d::Identity());
}
} // namespace mapping_2d

View File

@ -21,8 +21,7 @@
#include "cartographer/common/time.h"
#include "cartographer/mapping/global_trajectory_builder_interface.h"
#include "cartographer/mapping/imu_tracker.h"
#include "cartographer/mapping/odometry_state_tracker.h"
#include "cartographer/mapping/pose_extrapolator.h"
#include "cartographer/mapping_2d/proto/local_trajectory_builder_options.pb.h"
#include "cartographer/mapping_2d/scan_matching/ceres_scan_matcher.h"
#include "cartographer/mapping_2d/scan_matching/real_time_correlative_scan_matcher.h"
@ -75,34 +74,20 @@ class LocalTrajectoryBuilder {
const sensor::RangeData& range_data_in_tracking_2d,
transform::Rigid3d* pose_observation);
// Lazily constructs an ImuTracker.
void InitializeImuTracker(common::Time time);
// Updates the current estimate to reflect the given 'time'.
void Predict(common::Time time);
// Lazily constructs a PoseExtrapolator.
void InitializeExtrapolator(common::Time time);
const proto::LocalTrajectoryBuilderOptions options_;
ActiveSubmaps active_submaps_;
PoseEstimate last_pose_estimate_;
// Current 'pose_estimate_' and 'velocity_estimate_' at 'time_'.
common::Time time_ = common::Time::min();
transform::Rigid3d pose_estimate_ = transform::Rigid3d::Identity();
Eigen::Vector2d velocity_estimate_ = Eigen::Vector2d::Zero();
common::Time last_scan_match_time_ = common::Time::min();
// This is the difference between the model (constant velocity, IMU)
// prediction 'pose_estimate_' and the odometry prediction. To get the
// odometry prediction, right-multiply this to 'pose_estimate_'.
transform::Rigid3d odometry_correction_ = transform::Rigid3d::Identity();
mapping_3d::MotionFilter motion_filter_;
scan_matching::RealTimeCorrelativeScanMatcher
real_time_correlative_scan_matcher_;
scan_matching::CeresScanMatcher ceres_scan_matcher_;
std::unique_ptr<mapping::ImuTracker> imu_tracker_;
mapping::OdometryStateTracker odometry_state_tracker_;
std::unique_ptr<mapping::PoseExtrapolator> extrapolator_;
int num_accumulated_ = 0;
transform::Rigid3f first_pose_estimate_ = transform::Rigid3f::Identity();