Expose low resolution matching scores. (#470)

This is needed in preparation of adding a low resolution score histogram.
master
Wolfgang Hess 2017-08-23 17:48:49 +02:00 committed by GitHub
parent 2dd2d6f448
commit 4d11a226ff
14 changed files with 55 additions and 67 deletions

View File

@ -36,8 +36,6 @@ proto::ConstraintBuilderOptions CreateConstraintBuilderOptions(
sensor::CreateAdaptiveVoxelFilterOptions( sensor::CreateAdaptiveVoxelFilterOptions(
parameter_dictionary->GetDictionary("adaptive_voxel_filter").get()); parameter_dictionary->GetDictionary("adaptive_voxel_filter").get());
options.set_min_score(parameter_dictionary->GetDouble("min_score")); options.set_min_score(parameter_dictionary->GetDouble("min_score"));
options.set_min_low_resolution_score(
parameter_dictionary->GetDouble("min_low_resolution_score"));
options.set_global_localization_min_score( options.set_global_localization_min_score(
parameter_dictionary->GetDouble("global_localization_min_score")); parameter_dictionary->GetDouble("global_localization_min_score"));
options.set_loop_closure_translation_weight( options.set_loop_closure_translation_weight(

View File

@ -23,7 +23,6 @@ import "cartographer/mapping_3d/scan_matching/proto/ceres_scan_matcher_options.p
import "cartographer/mapping_3d/scan_matching/proto/fast_correlative_scan_matcher_options.proto"; import "cartographer/mapping_3d/scan_matching/proto/fast_correlative_scan_matcher_options.proto";
message ConstraintBuilderOptions { message ConstraintBuilderOptions {
// Next ID: 18
// A constraint will be added if the proportion of added constraints to // A constraint will be added if the proportion of added constraints to
// potential constraints drops below this number. // potential constraints drops below this number.
optional double sampling_ratio = 1; optional double sampling_ratio = 1;
@ -40,10 +39,6 @@ message ConstraintBuilderOptions {
// Low scores indicate that the scan and map do not look similar. // Low scores indicate that the scan and map do not look similar.
optional double min_score = 4; optional double min_score = 4;
// Threshold for the score of the low resolution grid below which a match is
// not considered. Only used for 3D.
optional double min_low_resolution_score = 17;
// Threshold below which global localizations are not trusted. // Threshold below which global localizations are not trusted.
optional double global_localization_min_score = 5; optional double global_localization_min_score = 5;

View File

@ -71,8 +71,7 @@ std::vector<mapping::SubmapId> SparsePoseGraph::GrowSubmapTransformsAsNeeded(
} }
CHECK_EQ(2, insertion_submaps.size()); CHECK_EQ(2, insertion_submaps.size());
const mapping::SubmapId last_submap_id{ const mapping::SubmapId last_submap_id{
trajectory_id, trajectory_id, submap_data.at(trajectory_id).rbegin()->first};
submap_data.at(trajectory_id).rbegin()->first};
if (submap_data_.at(last_submap_id).submap == insertion_submaps.front()) { if (submap_data_.at(last_submap_id).submap == insertion_submaps.front()) {
// In this case, 'last_submap_id' is the ID of 'insertions_submaps.front()' // In this case, 'last_submap_id' is the ID of 'insertions_submaps.front()'
// and 'insertions_submaps.back()' is new. // and 'insertions_submaps.back()' is new.
@ -193,8 +192,7 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
.pose.inverse() * .pose.inverse() *
optimization_problem_.node_data() optimization_problem_.node_data()
.at(node_id.trajectory_id) .at(node_id.trajectory_id)
.at(node_id.node_index - .at(node_id.node_index - optimization_problem_.num_trimmed_nodes(
optimization_problem_.num_trimmed_nodes(
node_id.trajectory_id)) node_id.trajectory_id))
.point_cloud_pose; .point_cloud_pose;
constraint_builder_.MaybeAddConstraint( constraint_builder_.MaybeAddConstraint(
@ -348,14 +346,16 @@ void SparsePoseGraph::WaitForAllComputations() {
common::FromSeconds(1.))) { common::FromSeconds(1.))) {
std::ostringstream progress_info; std::ostringstream progress_info;
progress_info << "Optimizing: " << std::fixed << std::setprecision(1) progress_info << "Optimizing: " << std::fixed << std::setprecision(1)
<< 100. * (constraint_builder_.GetNumFinishedScans() - << 100. *
(constraint_builder_.GetNumFinishedScans() -
num_finished_scans_at_start) / num_finished_scans_at_start) /
(num_trajectory_nodes_ - num_finished_scans_at_start) (num_trajectory_nodes_ - num_finished_scans_at_start)
<< "%..."; << "%...";
std::cout << "\r\x1b[K" << progress_info.str() << std::flush; std::cout << "\r\x1b[K" << progress_info.str() << std::flush;
} }
std::cout << "\r\x1b[KOptimizing: Done. " << std::endl; std::cout << "\r\x1b[KOptimizing: Done. " << std::endl;
constraint_builder_.WhenDone([this, &notification]( constraint_builder_.WhenDone(
[this, &notification](
const sparse_pose_graph::ConstraintBuilder::Result& result) { const sparse_pose_graph::ConstraintBuilder::Result& result) {
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
constraints_.insert(constraints_.end(), result.begin(), result.end()); constraints_.insert(constraints_.end(), result.begin(), result.end());

View File

@ -154,8 +154,8 @@ void OptimizationProblem::Solve(const std::vector<Constraint>& constraints,
const int submap_index = index_submap_data.first; const int submap_index = index_submap_data.first;
const SubmapData& submap_data = index_submap_data.second; const SubmapData& submap_data = index_submap_data.second;
C_submaps[trajectory_id].emplace( C_submaps[trajectory_id].emplace(submap_index,
submap_index, FromPose(submap_data.pose)); FromPose(submap_data.pose));
problem.AddParameterBlock( problem.AddParameterBlock(
C_submaps[trajectory_id].at(submap_index).data(), 3); C_submaps[trajectory_id].at(submap_index).data(), 3);
if (first_submap || frozen) { if (first_submap || frozen) {

View File

@ -75,7 +75,6 @@ class SparsePoseGraphTest : public ::testing::Test {
max_range = 50., max_range = 50.,
}, },
min_score = 0.5, min_score = 0.5,
min_low_resolution_score = 0.5,
global_localization_min_score = 0.6, global_localization_min_score = 0.6,
loop_closure_translation_weight = 1., loop_closure_translation_weight = 1.,
loop_closure_rotation_weight = 1., loop_closure_rotation_weight = 1.,
@ -100,6 +99,7 @@ class SparsePoseGraphTest : public ::testing::Test {
full_resolution_depth = 3, full_resolution_depth = 3,
rotational_histogram_size = 30, rotational_histogram_size = 30,
min_rotational_score = 0.1, min_rotational_score = 0.1,
min_low_resolution_score = 0.5,
linear_xy_search_window = 4., linear_xy_search_window = 4.,
linear_z_search_window = 4., linear_z_search_window = 4.,
angular_search_window = 0.1, angular_search_window = 0.1,

View File

@ -45,6 +45,8 @@ CreateFastCorrelativeScanMatcherOptions(
parameter_dictionary->GetInt("rotational_histogram_size")); parameter_dictionary->GetInt("rotational_histogram_size"));
options.set_min_rotational_score( options.set_min_rotational_score(
parameter_dictionary->GetDouble("min_rotational_score")); parameter_dictionary->GetDouble("min_rotational_score"));
options.set_min_low_resolution_score(
parameter_dictionary->GetDouble("min_low_resolution_score"));
options.set_linear_xy_search_window( options.set_linear_xy_search_window(
parameter_dictionary->GetDouble("linear_xy_search_window")); parameter_dictionary->GetDouble("linear_xy_search_window"));
options.set_linear_z_search_window( options.set_linear_z_search_window(
@ -354,7 +356,8 @@ Candidate FastCorrelativeScanMatcher::BranchAndBound(
// not have better score. // not have better score.
return best_high_resolution_candidate; return best_high_resolution_candidate;
} else if ((*search_parameters.matching_function)( } else if ((*search_parameters.matching_function)(
GetPoseFromCandidate(discrete_scans, candidate))) { GetPoseFromCandidate(discrete_scans, candidate)) >=
options_.min_low_resolution_score()) {
// We found the best candidate that passes the matching function. // We found the best candidate that passes the matching function.
return candidate; return candidate;
} }

View File

@ -68,7 +68,8 @@ struct Candidate {
bool operator>(const Candidate& other) const { return score > other.score; } bool operator>(const Candidate& other) const { return score > other.score; }
}; };
using MatchingFunction = std::function<bool(const transform::Rigid3f&)>; // Used to compute scores between 0 and 1 how well the given pose matches.
using MatchingFunction = std::function<float(const transform::Rigid3f&)>;
class FastCorrelativeScanMatcher { class FastCorrelativeScanMatcher {
public: public:

View File

@ -72,6 +72,7 @@ class FastCorrelativeScanMatcherTest : public ::testing::Test {
", " ", "
"rotational_histogram_size = 30, " "rotational_histogram_size = 30, "
"min_rotational_score = 0.1, " "min_rotational_score = 0.1, "
"min_low_resolution_score = 0.5, "
"linear_xy_search_window = 0.8, " "linear_xy_search_window = 0.8, "
"linear_z_search_window = 0.8, " "linear_z_search_window = 0.8, "
"angular_search_window = 0.3, " "angular_search_window = 0.3, "
@ -109,12 +110,13 @@ class FastCorrelativeScanMatcherTest : public ::testing::Test {
std::uniform_real_distribution<float> distribution_ = std::uniform_real_distribution<float> distribution_ =
std::uniform_real_distribution<float>(-1.f, 1.f); std::uniform_real_distribution<float>(-1.f, 1.f);
RangeDataInserter range_data_inserter_; RangeDataInserter range_data_inserter_;
static constexpr float kMinScore = 0.1f;
const proto::FastCorrelativeScanMatcherOptions options_; const proto::FastCorrelativeScanMatcherOptions options_;
sensor::PointCloud point_cloud_; sensor::PointCloud point_cloud_;
}; };
constexpr float FastCorrelativeScanMatcherTest::kMinScore; constexpr float kMinScore = 0.1f;
constexpr float kPassingLowResolutionScore = 1.f;
constexpr float kFailingLowResolutionScore = 0.f;
TEST_F(FastCorrelativeScanMatcherTest, CorrectPoseForMatch) { TEST_F(FastCorrelativeScanMatcherTest, CorrectPoseForMatch) {
for (int i = 0; i != 20; ++i) { for (int i = 0; i != 20; ++i) {
@ -128,8 +130,8 @@ TEST_F(FastCorrelativeScanMatcherTest, CorrectPoseForMatch) {
float rotational_score = 0.f; float rotational_score = 0.f;
EXPECT_TRUE(fast_correlative_scan_matcher->Match( EXPECT_TRUE(fast_correlative_scan_matcher->Match(
transform::Rigid3d::Identity(), point_cloud_, point_cloud_, kMinScore, transform::Rigid3d::Identity(), point_cloud_, point_cloud_, kMinScore,
[](const transform::Rigid3f&) { return true; }, &score, &pose_estimate, [](const transform::Rigid3f&) { return kPassingLowResolutionScore; },
&rotational_score)); &score, &pose_estimate, &rotational_score));
EXPECT_LT(kMinScore, score); EXPECT_LT(kMinScore, score);
EXPECT_LT(0.09f, rotational_score); EXPECT_LT(0.09f, rotational_score);
EXPECT_THAT(expected_pose, EXPECT_THAT(expected_pose,
@ -138,8 +140,8 @@ TEST_F(FastCorrelativeScanMatcherTest, CorrectPoseForMatch) {
<< "\nExpected: " << transform::ToProto(expected_pose).DebugString(); << "\nExpected: " << transform::ToProto(expected_pose).DebugString();
EXPECT_FALSE(fast_correlative_scan_matcher->Match( EXPECT_FALSE(fast_correlative_scan_matcher->Match(
transform::Rigid3d::Identity(), point_cloud_, point_cloud_, kMinScore, transform::Rigid3d::Identity(), point_cloud_, point_cloud_, kMinScore,
[](const transform::Rigid3f&) { return false; }, &score, &pose_estimate, [](const transform::Rigid3f&) { return kFailingLowResolutionScore; },
&rotational_score)); &score, &pose_estimate, &rotational_score));
} }
} }
@ -154,8 +156,8 @@ TEST_F(FastCorrelativeScanMatcherTest, CorrectPoseForMatchFullSubmap) {
float rotational_score = 0.f; float rotational_score = 0.f;
EXPECT_TRUE(fast_correlative_scan_matcher->MatchFullSubmap( EXPECT_TRUE(fast_correlative_scan_matcher->MatchFullSubmap(
Eigen::Quaterniond::Identity(), point_cloud_, point_cloud_, kMinScore, Eigen::Quaterniond::Identity(), point_cloud_, point_cloud_, kMinScore,
[](const transform::Rigid3f&) { return true; }, &score, &pose_estimate, [](const transform::Rigid3f&) { return kPassingLowResolutionScore; },
&rotational_score)); &score, &pose_estimate, &rotational_score));
EXPECT_LT(kMinScore, score); EXPECT_LT(kMinScore, score);
EXPECT_LT(0.09f, rotational_score); EXPECT_LT(0.09f, rotational_score);
EXPECT_THAT(expected_pose, EXPECT_THAT(expected_pose,
@ -164,8 +166,8 @@ TEST_F(FastCorrelativeScanMatcherTest, CorrectPoseForMatchFullSubmap) {
<< "\nExpected: " << transform::ToProto(expected_pose).DebugString(); << "\nExpected: " << transform::ToProto(expected_pose).DebugString();
EXPECT_FALSE(fast_correlative_scan_matcher->MatchFullSubmap( EXPECT_FALSE(fast_correlative_scan_matcher->MatchFullSubmap(
Eigen::Quaterniond::Identity(), point_cloud_, point_cloud_, kMinScore, Eigen::Quaterniond::Identity(), point_cloud_, point_cloud_, kMinScore,
[](const transform::Rigid3f&) { return false; }, &score, &pose_estimate, [](const transform::Rigid3f&) { return kFailingLowResolutionScore; },
&rotational_score)); &score, &pose_estimate, &rotational_score));
} }
} // namespace } // namespace

View File

@ -20,29 +20,16 @@ namespace cartographer {
namespace mapping_3d { namespace mapping_3d {
namespace scan_matching { namespace scan_matching {
namespace { std::function<float(const transform::Rigid3f&)> CreateLowResolutionMatcher(
const HybridGrid* low_resolution_grid, const sensor::PointCloud* points) {
// TODO(zhengj, whess): Interpolate the Grid to get better score.
float EvaluateLowResolutionScore(const HybridGrid& low_resolution_grid,
const sensor::PointCloud& points) {
float score = 0.f;
for (const auto& point : points) {
score += low_resolution_grid.GetProbability(
low_resolution_grid.GetCellIndex(point));
}
return score / points.size();
}
} // namespace
std::function<bool(const transform::Rigid3f&)> CreateLowResolutionMatcher(
const HybridGrid* low_resolution_grid, const sensor::PointCloud* points,
const float min_low_resolution_score) {
return [=](const transform::Rigid3f& pose) { return [=](const transform::Rigid3f& pose) {
return EvaluateLowResolutionScore( float score = 0.f;
*low_resolution_grid, for (const auto& point : sensor::TransformPointCloud(*points, pose)) {
sensor::TransformPointCloud(*points, pose)) >= // TODO(zhengj, whess): Interpolate the Grid to get better score.
min_low_resolution_score; score += low_resolution_grid->GetProbability(
low_resolution_grid->GetCellIndex(point));
}
return score / points->size();
}; };
} }

View File

@ -27,9 +27,8 @@ namespace cartographer {
namespace mapping_3d { namespace mapping_3d {
namespace scan_matching { namespace scan_matching {
std::function<bool(const transform::Rigid3f&)> CreateLowResolutionMatcher( std::function<float(const transform::Rigid3f&)> CreateLowResolutionMatcher(
const HybridGrid* low_resolution_grid, const sensor::PointCloud* points, const HybridGrid* low_resolution_grid, const sensor::PointCloud* points);
float min_low_resolution_score);
} // namespace scan_matching } // namespace scan_matching
} // namespace mapping_3d } // namespace mapping_3d

View File

@ -30,6 +30,10 @@ message FastCorrelativeScanMatcherOptions {
// Minimum score for the rotational scan matcher. // Minimum score for the rotational scan matcher.
optional double min_rotational_score = 4; optional double min_rotational_score = 4;
// Threshold for the score of the low resolution grid below which a match is
// not considered. Only used for 3D.
optional double min_low_resolution_score = 9;
// Linear search window in the plane orthogonal to gravity in which the best // Linear search window in the plane orthogonal to gravity in which the best
// possible scan alignment will be found. // possible scan alignment will be found.
optional double linear_xy_search_window = 5; optional double linear_xy_search_window = 5;

View File

@ -192,7 +192,7 @@ void ConstraintBuilder::ComputeConstraint(
const auto low_resolution_matcher = scan_matching::CreateLowResolutionMatcher( const auto low_resolution_matcher = scan_matching::CreateLowResolutionMatcher(
submap_scan_matcher->low_resolution_hybrid_grid, submap_scan_matcher->low_resolution_hybrid_grid,
&low_resolution_point_cloud, options_.min_low_resolution_score()); &low_resolution_point_cloud);
// Compute 'pose_estimate' in three stages: // Compute 'pose_estimate' in three stages:
// 1. Fast estimate using the fast correlative scan matcher. // 1. Fast estimate using the fast correlative scan matcher.

View File

@ -23,7 +23,6 @@ SPARSE_POSE_GRAPH = {
max_range = 50., max_range = 50.,
}, },
min_score = 0.55, min_score = 0.55,
min_low_resolution_score = 0.55,
global_localization_min_score = 0.6, global_localization_min_score = 0.6,
loop_closure_translation_weight = 1.1e4, loop_closure_translation_weight = 1.1e4,
loop_closure_rotation_weight = 1e5, loop_closure_rotation_weight = 1e5,
@ -48,6 +47,7 @@ SPARSE_POSE_GRAPH = {
full_resolution_depth = 3, full_resolution_depth = 3,
rotational_histogram_size = 120, rotational_histogram_size = 120,
min_rotational_score = 0.77, min_rotational_score = 0.77,
min_low_resolution_score = 0.55,
linear_xy_search_window = 5., linear_xy_search_window = 5.,
linear_z_search_window = 1., linear_z_search_window = 1.,
angular_search_window = math.rad(15.), angular_search_window = math.rad(15.),

View File

@ -96,7 +96,6 @@ cartographer.mapping.sparse_pose_graph.proto.ConstraintBuilderOptions
===================================================================== =====================================================================
double sampling_ratio double sampling_ratio
Next ID: 18
A constraint will be added if the proportion of added constraints to A constraint will be added if the proportion of added constraints to
potential constraints drops below this number. potential constraints drops below this number.
@ -111,10 +110,6 @@ double min_score
Threshold for the scan match score below which a match is not considered. Threshold for the scan match score below which a match is not considered.
Low scores indicate that the scan and map do not look similar. Low scores indicate that the scan and map do not look similar.
double min_low_resolution_score
Threshold for the score of the low resolution grid below which a match is
not considered. Only used for 3D.
double global_localization_min_score double global_localization_min_score
Threshold below which global localizations are not trusted. Threshold below which global localizations are not trusted.
@ -445,6 +440,10 @@ int32 rotational_histogram_size
double min_rotational_score double min_rotational_score
Minimum score for the rotational scan matcher. Minimum score for the rotational scan matcher.
double min_low_resolution_score
Threshold for the score of the low resolution grid below which a match is
not considered. Only used for 3D.
double linear_xy_search_window double linear_xy_search_window
Linear search window in the plane orthogonal to gravity in which the best Linear search window in the plane orthogonal to gravity in which the best
possible scan alignment will be found. possible scan alignment will be found.