Allow rotating histograms in the rotational scan matcher. (#501)
This allows reusing histograms to match for different yaws. Adds a unit test to test that rotated histograms match as expected.master
parent
18d8ea75fa
commit
4829ffee46
cartographer/mapping_3d/scan_matching
|
@ -125,6 +125,24 @@ struct Candidate {
|
|||
bool operator>(const Candidate& other) const { return score > other.score; }
|
||||
};
|
||||
|
||||
namespace {
|
||||
|
||||
scan_matching::RotationalScanMatcher CreateRotationalScanMatcher(
|
||||
const std::vector<mapping::TrajectoryNode>& nodes,
|
||||
const int histogram_size) {
|
||||
Eigen::VectorXf histogram = Eigen::VectorXf::Zero(histogram_size);
|
||||
for (const mapping::TrajectoryNode& node : nodes) {
|
||||
histogram += scan_matching::RotationalScanMatcher::ComputeHistogram(
|
||||
sensor::TransformPointCloud(
|
||||
node.constant_data->range_data.returns.Decompress(),
|
||||
node.pose.cast<float>()),
|
||||
histogram_size);
|
||||
}
|
||||
return scan_matching::RotationalScanMatcher({{histogram, 0.f}});
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
FastCorrelativeScanMatcher::FastCorrelativeScanMatcher(
|
||||
const HybridGrid& hybrid_grid,
|
||||
const HybridGrid* const low_resolution_hybrid_grid,
|
||||
|
@ -136,7 +154,8 @@ FastCorrelativeScanMatcher::FastCorrelativeScanMatcher(
|
|||
precomputation_grid_stack_(
|
||||
common::make_unique<PrecomputationGridStack>(hybrid_grid, options)),
|
||||
low_resolution_hybrid_grid_(low_resolution_hybrid_grid),
|
||||
rotational_scan_matcher_(nodes, options_.rotational_histogram_size()) {}
|
||||
rotational_scan_matcher_(CreateRotationalScanMatcher(
|
||||
nodes, options_.rotational_histogram_size())) {}
|
||||
|
||||
FastCorrelativeScanMatcher::~FastCorrelativeScanMatcher() {}
|
||||
|
||||
|
@ -286,7 +305,10 @@ std::vector<DiscreteScan> FastCorrelativeScanMatcher::GenerateDiscreteScans(
|
|||
angles.push_back(rz * angular_step_size);
|
||||
}
|
||||
const std::vector<float> scores = rotational_scan_matcher_.Match(
|
||||
sensor::TransformPointCloud(fine_point_cloud, initial_pose), angles);
|
||||
RotationalScanMatcher::ComputeHistogram(
|
||||
sensor::TransformPointCloud(fine_point_cloud, initial_pose),
|
||||
options_.rotational_histogram_size()),
|
||||
0.f /* initial_angle */, angles);
|
||||
for (size_t i = 0; i != angles.size(); ++i) {
|
||||
if (scores[i] < options_.min_rotational_score()) {
|
||||
continue;
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#include <vector>
|
||||
|
||||
#include "cartographer/common/math.h"
|
||||
#include "cartographer/common/port.h"
|
||||
|
||||
namespace cartographer {
|
||||
namespace mapping_3d {
|
||||
|
@ -57,14 +58,8 @@ Eigen::Vector3f ComputeCentroid(const sensor::PointCloud& slice) {
|
|||
return sum / static_cast<float>(slice.size());
|
||||
}
|
||||
|
||||
struct AngleValuePair {
|
||||
float angle;
|
||||
float value;
|
||||
};
|
||||
|
||||
void AddPointCloudSliceToValueVector(
|
||||
const sensor::PointCloud& slice,
|
||||
std::vector<AngleValuePair>* value_vector) {
|
||||
void AddPointCloudSliceToHistogram(const sensor::PointCloud& slice,
|
||||
Eigen::VectorXf* const histogram) {
|
||||
if (slice.empty()) {
|
||||
return;
|
||||
}
|
||||
|
@ -88,7 +83,7 @@ void AddPointCloudSliceToValueVector(
|
|||
const float angle = common::atan2(delta);
|
||||
const float value = std::max(
|
||||
0.f, 1.f - std::abs(delta.normalized().dot(direction.normalized())));
|
||||
value_vector->push_back(AngleValuePair{angle, value});
|
||||
AddValueToHistogram(angle, value, histogram);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -122,68 +117,78 @@ sensor::PointCloud SortSlice(const sensor::PointCloud& slice) {
|
|||
return result;
|
||||
}
|
||||
|
||||
std::vector<AngleValuePair> GetValuesForHistogram(
|
||||
const sensor::PointCloud& point_cloud) {
|
||||
std::map<int, sensor::PointCloud> slices;
|
||||
for (const Eigen::Vector3f& point : point_cloud) {
|
||||
slices[common::RoundToInt(point.z() / kSliceHeight)].push_back(point);
|
||||
// Rotates the given 'histogram' by the given 'angle'. This might lead to
|
||||
// rotations of a fractional bucket which is handled by linearly interpolating.
|
||||
Eigen::VectorXf RotateHistogram(const Eigen::VectorXf& histogram,
|
||||
const float angle) {
|
||||
const float rotate_by_buckets = -angle * histogram.size() / M_PI;
|
||||
int full_buckets = common::RoundToInt(rotate_by_buckets - 0.5f);
|
||||
const float fraction = rotate_by_buckets - full_buckets;
|
||||
while (full_buckets < 0) {
|
||||
full_buckets += histogram.size();
|
||||
}
|
||||
std::vector<AngleValuePair> result;
|
||||
for (const auto& slice : slices) {
|
||||
AddPointCloudSliceToValueVector(SortSlice(slice.second), &result);
|
||||
Eigen::VectorXf rotated_histogram_0 = Eigen::VectorXf::Zero(histogram.size());
|
||||
Eigen::VectorXf rotated_histogram_1 = Eigen::VectorXf::Zero(histogram.size());
|
||||
for (int i = 0; i != histogram.size(); ++i) {
|
||||
rotated_histogram_0[i] = histogram[(i + full_buckets) % histogram.size()];
|
||||
rotated_histogram_1[i] =
|
||||
histogram[(i + 1 + full_buckets) % histogram.size()];
|
||||
}
|
||||
return result;
|
||||
return fraction * rotated_histogram_1 +
|
||||
(1.f - fraction) * rotated_histogram_0;
|
||||
}
|
||||
|
||||
void AddValuesToHistogram(const std::vector<AngleValuePair>& value_vector,
|
||||
const float rotation, Eigen::VectorXf* histogram) {
|
||||
for (const AngleValuePair& pair : value_vector) {
|
||||
AddValueToHistogram(pair.angle + rotation, pair.value, histogram);
|
||||
float MatchHistograms(const Eigen::VectorXf& submap_histogram,
|
||||
const Eigen::VectorXf& scan_histogram) {
|
||||
// We compute the dot product of normalized histograms as a measure of
|
||||
// similarity.
|
||||
const float scan_histogram_norm = scan_histogram.norm();
|
||||
const float submap_histogram_norm = submap_histogram.norm();
|
||||
const float normalization = scan_histogram_norm * submap_histogram_norm;
|
||||
if (normalization < 1e-3f) {
|
||||
return 1.f;
|
||||
}
|
||||
return submap_histogram.dot(scan_histogram) / normalization;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
Eigen::VectorXf RotationalScanMatcher::ComputeHistogram(
|
||||
const sensor::PointCloud& point_cloud, const int histogram_size) {
|
||||
Eigen::VectorXf histogram = Eigen::VectorXf::Zero(histogram_size);
|
||||
std::map<int, sensor::PointCloud> slices;
|
||||
for (const Eigen::Vector3f& point : point_cloud) {
|
||||
slices[common::RoundToInt(point.z() / kSliceHeight)].push_back(point);
|
||||
}
|
||||
for (const auto& slice : slices) {
|
||||
AddPointCloudSliceToHistogram(SortSlice(slice.second), &histogram);
|
||||
}
|
||||
return histogram;
|
||||
}
|
||||
|
||||
RotationalScanMatcher::RotationalScanMatcher(
|
||||
const std::vector<mapping::TrajectoryNode>& nodes, const int histogram_size)
|
||||
: histogram_(Eigen::VectorXf::Zero(histogram_size)) {
|
||||
for (const mapping::TrajectoryNode& node : nodes) {
|
||||
AddValuesToHistogram(
|
||||
GetValuesForHistogram(sensor::TransformPointCloud(
|
||||
node.constant_data->range_data.returns.Decompress(),
|
||||
node.pose.cast<float>())),
|
||||
0.f, &histogram_);
|
||||
const std::vector<std::pair<Eigen::VectorXf, float>>& histograms_at_angles)
|
||||
: histogram_(
|
||||
Eigen::VectorXf::Zero(histograms_at_angles.at(0).first.size())) {
|
||||
for (const auto& histogram_at_angle : histograms_at_angles) {
|
||||
histogram_ +=
|
||||
RotateHistogram(histogram_at_angle.first, histogram_at_angle.second);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<float> RotationalScanMatcher::Match(
|
||||
const sensor::PointCloud& point_cloud,
|
||||
const Eigen::VectorXf& histogram, const float initial_angle,
|
||||
const std::vector<float>& angles) const {
|
||||
std::vector<float> result;
|
||||
result.reserve(angles.size());
|
||||
const std::vector<AngleValuePair> value_vector =
|
||||
GetValuesForHistogram(point_cloud);
|
||||
for (const float angle : angles) {
|
||||
Eigen::VectorXf scan_histogram = Eigen::VectorXf::Zero(histogram_.size());
|
||||
AddValuesToHistogram(value_vector, angle, &scan_histogram);
|
||||
result.push_back(MatchHistogram(scan_histogram));
|
||||
const Eigen::VectorXf scan_histogram =
|
||||
RotateHistogram(histogram, initial_angle + angle);
|
||||
result.push_back(MatchHistograms(histogram_, scan_histogram));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
float RotationalScanMatcher::MatchHistogram(
|
||||
const Eigen::VectorXf& scan_histogram) const {
|
||||
// We compute the dot product of normalized histograms as a measure of
|
||||
// similarity.
|
||||
const float scan_histogram_norm = scan_histogram.norm();
|
||||
const float histogram_norm = histogram_.norm();
|
||||
const float normalization = scan_histogram_norm * histogram_norm;
|
||||
if (normalization < 1e-3f) {
|
||||
return 1.f;
|
||||
}
|
||||
return histogram_.dot(scan_histogram) / normalization;
|
||||
}
|
||||
|
||||
} // namespace scan_matching
|
||||
} // namespace mapping_3d
|
||||
} // namespace cartographer
|
||||
|
|
|
@ -20,7 +20,6 @@
|
|||
#include <vector>
|
||||
|
||||
#include "Eigen/Geometry"
|
||||
#include "cartographer/mapping/trajectory_node.h"
|
||||
#include "cartographer/sensor/point_cloud.h"
|
||||
|
||||
namespace cartographer {
|
||||
|
@ -29,21 +28,25 @@ namespace scan_matching {
|
|||
|
||||
class RotationalScanMatcher {
|
||||
public:
|
||||
// Computes the histogram for a gravity aligned 'point_cloud'.
|
||||
static Eigen::VectorXf ComputeHistogram(const sensor::PointCloud& point_cloud,
|
||||
int histogram_size);
|
||||
|
||||
// Creates a matcher from the given histograms rotated by the given angles.
|
||||
// The angles should be chosen to bring the histograms into approximately the
|
||||
// same frame.
|
||||
explicit RotationalScanMatcher(
|
||||
const std::vector<mapping::TrajectoryNode>& nodes, int histogram_size);
|
||||
const std::vector<std::pair<Eigen::VectorXf, float>>&
|
||||
histograms_at_angles);
|
||||
|
||||
RotationalScanMatcher(const RotationalScanMatcher&) = delete;
|
||||
RotationalScanMatcher& operator=(const RotationalScanMatcher&) = delete;
|
||||
|
||||
// Scores how well a 'point_cloud' can be understood as rotated by certain
|
||||
// 'angles' relative to the 'nodes'. Each angle results in a score between
|
||||
// 0 (worst) and 1 (best).
|
||||
std::vector<float> Match(const sensor::PointCloud& point_cloud,
|
||||
// Scores how well 'histogram' rotated by 'initial_angle' can be understood as
|
||||
// further rotated by certain 'angles' relative to the 'nodes'. Each angle
|
||||
// results in a score between 0 (worst) and 1 (best).
|
||||
std::vector<float> Match(const Eigen::VectorXf& histogram,
|
||||
float initial_angle,
|
||||
const std::vector<float>& angles) const;
|
||||
|
||||
private:
|
||||
float MatchHistogram(const Eigen::VectorXf& scan_histogram) const;
|
||||
|
||||
Eigen::VectorXf histogram_;
|
||||
};
|
||||
|
||||
|
|
|
@ -0,0 +1,71 @@
|
|||
/*
|
||||
* Copyright 2016 The Cartographer Authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "cartographer/mapping_3d/scan_matching/rotational_scan_matcher.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace cartographer {
|
||||
namespace mapping_3d {
|
||||
namespace scan_matching {
|
||||
namespace {
|
||||
|
||||
TEST(RotationalScanMatcherTest, OnlySameHistogramIsScoreOne) {
|
||||
Eigen::VectorXf histogram(7);
|
||||
histogram << 1.f, 43.f, 0.5f, 0.3123f, 23.f, 42.f, 0.f;
|
||||
RotationalScanMatcher matcher({{histogram, 0.f}});
|
||||
const auto scores = matcher.Match(histogram, 0.f, {0.f, 1.f});
|
||||
ASSERT_EQ(2, scores.size());
|
||||
EXPECT_NEAR(1.f, scores[0], 1e-6);
|
||||
EXPECT_GT(1.f, scores[1]);
|
||||
}
|
||||
|
||||
TEST(RotationalScanMatcherTest, InterpolatesAsExpected) {
|
||||
constexpr int kNumBuckets = 10;
|
||||
constexpr float kAnglePerBucket = M_PI / kNumBuckets;
|
||||
constexpr float kNoInitialRotation = 0.f;
|
||||
RotationalScanMatcher matcher(
|
||||
{{Eigen::VectorXf::Unit(kNumBuckets, 3), kNoInitialRotation}});
|
||||
for (float t = 0.f; t < 1.f; t += 0.1f) {
|
||||
// 't' is the fraction of overlap and we have to divide by the norm of the
|
||||
// histogram to get the expected score.
|
||||
const float expected_score = t / std::hypot(t, 1 - t);
|
||||
// We rotate the 't'-th fraction of a bucket into the matcher's histogram.
|
||||
auto scores = matcher.Match(Eigen::VectorXf::Unit(kNumBuckets, 2),
|
||||
kNoInitialRotation, {t * kAnglePerBucket});
|
||||
ASSERT_EQ(1, scores.size());
|
||||
EXPECT_NEAR(expected_score, scores[0], 1e-6);
|
||||
// Also verify rotating out of a bucket.
|
||||
scores = matcher.Match(Eigen::VectorXf::Unit(kNumBuckets, 2),
|
||||
kNoInitialRotation, {(2 - t) * kAnglePerBucket});
|
||||
ASSERT_EQ(1, scores.size());
|
||||
EXPECT_NEAR(expected_score, scores[0], 1e-6);
|
||||
// And into and out of a bucket with negative angle.
|
||||
scores =
|
||||
matcher.Match(Eigen::VectorXf::Unit(kNumBuckets, 4), kNoInitialRotation,
|
||||
{-t * kAnglePerBucket, (t - 2) * kAnglePerBucket});
|
||||
ASSERT_EQ(2, scores.size());
|
||||
EXPECT_NEAR(expected_score, scores[0], 1e-6);
|
||||
EXPECT_NEAR(expected_score, scores[1], 1e-6);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace scan_matching
|
||||
} // namespace mapping_3d
|
||||
} // namespace cartographer
|
Loading…
Reference in New Issue