Adds a NestedVectorsById<> class template. (#300)

master
Wolfgang Hess 2017-05-19 16:58:21 +02:00 committed by GitHub
parent 0bba56428f
commit 2d416589a7
5 changed files with 159 additions and 171 deletions

View File

@ -17,8 +17,10 @@
#ifndef CARTOGRAPHER_MAPPING_ID_H_
#define CARTOGRAPHER_MAPPING_ID_H_
#include <algorithm>
#include <ostream>
#include <tuple>
#include <vector>
namespace cartographer {
namespace mapping {
@ -55,6 +57,40 @@ inline std::ostream& operator<<(std::ostream& os, const SubmapId& v) {
return os << "(" << v.trajectory_id << ", " << v.submap_index << ")";
}
template <typename ValueType, typename IdType>
class NestedVectorsById {
public:
// Appends data to a trajectory, creating trajectories as needed.
IdType Append(int trajectory_id, const ValueType& value) {
data_.resize(std::max<size_t>(data_.size(), trajectory_id + 1));
const IdType id{trajectory_id,
static_cast<int>(data_[trajectory_id].size())};
data_[trajectory_id].push_back(value);
return id;
}
const ValueType& at(const IdType& id) const {
return data_.at(id.trajectory_id).at(GetIndex(id));
}
ValueType& at(const IdType& id) {
return data_.at(id.trajectory_id).at(GetIndex(id));
}
int num_trajectories() const { return static_cast<int>(data_.size()); }
int num_indices(int trajectory_id) const {
return static_cast<int>(data_.at(trajectory_id).size());
}
// TODO(whess): Remove once no longer needed.
const std::vector<std::vector<ValueType>> data() const { return data_; }
private:
static int GetIndex(const NodeId& id) { return id.node_index; }
static int GetIndex(const SubmapId& id) { return id.submap_index; }
std::vector<std::vector<ValueType>> data_;
};
} // namespace mapping
} // namespace cartographer

View File

@ -101,24 +101,18 @@ void SparsePoseGraph::AddScan(
time, range_data_in_pose,
Compress(sensor::RangeData{Eigen::Vector3f::Zero(), {}, {}}),
trajectory_id, tracking_to_pose});
trajectory_nodes_.resize(
std::max<size_t>(trajectory_nodes_.size(), trajectory_id + 1));
trajectory_nodes_[trajectory_id].push_back(mapping::TrajectoryNode{
trajectory_nodes_.Append(trajectory_id,
mapping::TrajectoryNode{
&constant_node_data_.back(), optimized_pose,
});
++num_trajectory_nodes_;
trajectory_connectivity_.Add(trajectory_id);
if (submap_ids_.count(insertion_submaps.back()) == 0) {
submap_states_.resize(
std::max<size_t>(submap_states_.size(), trajectory_id + 1));
auto& trajectory_submap_states = submap_states_.at(trajectory_id);
submap_ids_.emplace(
insertion_submaps.back(),
mapping::SubmapId{trajectory_id,
static_cast<int>(trajectory_submap_states.size())});
trajectory_submap_states.emplace_back();
trajectory_submap_states.back().submap = insertion_submaps.back();
const mapping::SubmapId submap_id =
submap_states_.Append(trajectory_id, SubmapState());
submap_ids_.emplace(insertion_submaps.back(), submap_id);
submap_states_.at(submap_id).submap = insertion_submaps.back();
}
const mapping::Submap* const finished_submap =
insertion_submaps.front()->finished_probability_grid != nullptr
@ -162,14 +156,8 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
if (node_id.trajectory_id != submap_id.trajectory_id &&
global_localization_samplers_[node_id.trajectory_id]->Pulse()) {
constraint_builder_.MaybeAddGlobalConstraint(
submap_id,
submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.submap,
node_id,
&trajectory_nodes_.at(node_id.trajectory_id)
.at(node_id.node_index)
.constant_data->range_data_2d.returns,
submap_id, submap_states_.at(submap_id).submap, node_id,
&trajectory_nodes_.at(node_id).constant_data->range_data_2d.returns,
&trajectory_connectivity_);
} else {
const bool scan_and_submap_trajectories_connected =
@ -190,14 +178,8 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
.point_cloud_pose;
constraint_builder_.MaybeAddConstraint(
submap_id,
submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.submap,
node_id,
&trajectory_nodes_.at(node_id.trajectory_id)
.at(node_id.node_index)
.constant_data->range_data_2d.returns,
submap_id, submap_states_.at(submap_id).submap, node_id,
&trajectory_nodes_.at(node_id).constant_data->range_data_2d.returns,
initial_relative_pose);
}
}
@ -206,8 +188,7 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
void SparsePoseGraph::ComputeConstraintsForOldScans(
const mapping::Submap* submap) {
const auto submap_id = GetSubmapId(submap);
const auto& submap_state =
submap_states_.at(submap_id.trajectory_id).at(submap_id.submap_index);
const auto& submap_state = submap_states_.at(submap_id);
const auto& node_data = optimization_problem_.node_data();
for (size_t trajectory_id = 0; trajectory_id != node_data.size();
@ -245,20 +226,14 @@ void SparsePoseGraph::ComputeConstraintsForScan(
.size())
: 0};
const mapping::TrajectoryNode::ConstantData* const scan_data =
trajectory_nodes_.at(node_id.trajectory_id)
.at(node_id.node_index)
.constant_data;
trajectory_nodes_.at(node_id).constant_data;
CHECK_EQ(scan_data->trajectory_id, matching_id.trajectory_id);
optimization_problem_.AddTrajectoryNode(
matching_id.trajectory_id, scan_data->time, pose, optimized_pose);
for (const mapping::Submap* submap : insertion_submaps) {
const mapping::SubmapId submap_id = GetSubmapId(submap);
CHECK(!submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.finished);
submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.node_ids.emplace(node_id);
CHECK(!submap_states_.at(submap_id).finished);
submap_states_.at(submap_id).node_ids.emplace(node_id);
// Unchanged covariance as (submap <- map) is a translation.
const transform::Rigid2d constraint_transform =
sparse_pose_graph::ComputeSubmapPose(*submap).inverse() * pose;
@ -276,28 +251,22 @@ void SparsePoseGraph::ComputeConstraintsForScan(
Constraint::INTRA_SUBMAP});
}
for (size_t trajectory_id = 0; trajectory_id < submap_states_.size();
for (int trajectory_id = 0; trajectory_id < submap_states_.num_trajectories();
++trajectory_id) {
for (size_t submap_index = 0;
submap_index < submap_states_.at(trajectory_id).size();
for (int submap_index = 0;
submap_index < submap_states_.num_indices(trajectory_id);
++submap_index) {
if (submap_states_.at(trajectory_id).at(submap_index).finished) {
CHECK_EQ(submap_states_.at(trajectory_id)
.at(submap_index)
.node_ids.count(node_id),
0);
ComputeConstraint(node_id,
mapping::SubmapId{static_cast<int>(trajectory_id),
static_cast<int>(submap_index)});
const mapping::SubmapId submap_id{trajectory_id, submap_index};
if (submap_states_.at(submap_id).finished) {
CHECK_EQ(submap_states_.at(submap_id).node_ids.count(node_id), 0);
ComputeConstraint(node_id, submap_id);
}
}
}
if (finished_submap != nullptr) {
const mapping::SubmapId finished_submap_id = GetSubmapId(finished_submap);
SubmapState& finished_submap_state =
submap_states_.at(finished_submap_id.trajectory_id)
.at(finished_submap_id.submap_index);
SubmapState& finished_submap_state = submap_states_.at(finished_submap_id);
CHECK(!finished_submap_state.finished);
// We have a new completed submap, so we look into adding constraints for
// old scans.
@ -391,12 +360,14 @@ void SparsePoseGraph::RunOptimization() {
common::MutexLocker locker(&mutex_);
const auto& node_data = optimization_problem_.node_data();
for (size_t trajectory_id = 0; trajectory_id != node_data.size();
++trajectory_id) {
size_t node_index = 0;
const size_t num_nodes = trajectory_nodes_.at(trajectory_id).size();
for (; node_index != node_data[trajectory_id].size(); ++node_index) {
trajectory_nodes_[trajectory_id][node_index].pose = transform::Embed3D(
for (int trajectory_id = 0;
trajectory_id != static_cast<int>(node_data.size()); ++trajectory_id) {
int node_index = 0;
const int num_nodes = trajectory_nodes_.num_indices(trajectory_id);
for (; node_index != static_cast<int>(node_data[trajectory_id].size());
++node_index) {
const mapping::NodeId node_id{trajectory_id, node_index};
trajectory_nodes_.at(node_id).pose = transform::Embed3D(
node_data[trajectory_id][node_index].point_cloud_pose);
}
// Extrapolate all point cloud poses that were added later.
@ -408,9 +379,9 @@ void SparsePoseGraph::RunOptimization() {
const transform::Rigid3d extrapolation_transform =
new_submap_transforms.back() * old_submap_transforms.back().inverse();
for (; node_index < num_nodes; ++node_index) {
trajectory_nodes_[trajectory_id][node_index].pose =
extrapolation_transform *
trajectory_nodes_[trajectory_id][node_index].pose;
const mapping::NodeId node_id{trajectory_id, node_index};
trajectory_nodes_.at(node_id).pose =
extrapolation_transform * trajectory_nodes_.at(node_id).pose;
}
}
optimized_submap_transforms_ = optimization_problem_.submap_data();
@ -426,7 +397,7 @@ void SparsePoseGraph::RunOptimization() {
std::vector<std::vector<mapping::TrajectoryNode>>
SparsePoseGraph::GetTrajectoryNodes() {
common::MutexLocker locker(&mutex_);
return trajectory_nodes_;
return trajectory_nodes_.data();
}
std::vector<SparsePoseGraph::Constraint> SparsePoseGraph::constraints() {
@ -437,15 +408,17 @@ std::vector<SparsePoseGraph::Constraint> SparsePoseGraph::constraints() {
transform::Rigid3d SparsePoseGraph::GetLocalToGlobalTransform(
const int trajectory_id) {
common::MutexLocker locker(&mutex_);
if (submap_states_.size() <= static_cast<size_t>(trajectory_id) ||
submap_states_.at(trajectory_id).empty()) {
if (submap_states_.num_trajectories() <= trajectory_id ||
submap_states_.num_indices(trajectory_id) == 0) {
return transform::Rigid3d::Identity();
}
const auto extrapolated_submap_transforms =
ExtrapolateSubmapTransforms(optimized_submap_transforms_, trajectory_id);
return extrapolated_submap_transforms.back() *
submap_states_.at(trajectory_id)
.at(extrapolated_submap_transforms.size() - 1)
submap_states_
.at(mapping::SubmapId{
trajectory_id,
static_cast<int>(extrapolated_submap_transforms.size()) - 1})
.submap->local_pose.inverse();
}
@ -464,15 +437,19 @@ std::vector<transform::Rigid3d> SparsePoseGraph::GetSubmapTransforms(
std::vector<transform::Rigid3d> SparsePoseGraph::ExtrapolateSubmapTransforms(
const std::vector<std::vector<sparse_pose_graph::SubmapData>>&
submap_transforms,
const size_t trajectory_id) const {
if (trajectory_id >= submap_states_.size()) {
const int trajectory_id) const {
if (trajectory_id >= submap_states_.num_trajectories()) {
return {transform::Rigid3d::Identity()};
}
// Submaps for which we have optimized poses.
std::vector<transform::Rigid3d> result;
for (const auto& state : submap_states_.at(trajectory_id)) {
if (trajectory_id < submap_transforms.size() &&
for (int submap_index = 0;
submap_index != submap_states_.num_indices(trajectory_id);
++submap_index) {
const mapping::SubmapId submap_id{trajectory_id, submap_index};
const auto& state = submap_states_.at(submap_id);
if (static_cast<size_t>(trajectory_id) < submap_transforms.size() &&
result.size() < submap_transforms.at(trajectory_id).size()) {
// Submaps for which we have optimized poses.
result.push_back(
@ -482,10 +459,11 @@ std::vector<transform::Rigid3d> SparsePoseGraph::ExtrapolateSubmapTransforms(
} else {
// Extrapolate to the remaining submaps. Accessing 'local_pose' in Submaps
// is okay, since the member is const.
result.push_back(result.back() *
submap_states_.at(trajectory_id)
.at(result.size() - 1)
.submap->local_pose.inverse() *
const mapping::SubmapId previous_submap_id{
trajectory_id, static_cast<int>(result.size()) - 1};
result.push_back(
result.back() *
submap_states_.at(previous_submap_id).submap->local_pose.inverse() *
state.submap->local_pose);
}
}

View File

@ -152,7 +152,7 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
std::vector<transform::Rigid3d> ExtrapolateSubmapTransforms(
const std::vector<std::vector<sparse_pose_graph::SubmapData>>&
submap_transforms,
size_t trajectory_id) const REQUIRES(mutex_);
int trajectory_id) const REQUIRES(mutex_);
const mapping::proto::SparsePoseGraphOptions options_;
common::Mutex mutex_;
@ -184,7 +184,8 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
// before they take part in the background computations.
std::map<const mapping::Submap*, mapping::SubmapId> submap_ids_
GUARDED_BY(mutex_);
std::vector<std::vector<SubmapState>> submap_states_ GUARDED_BY(mutex_);
mapping::NestedVectorsById<SubmapState, mapping::SubmapId> submap_states_
GUARDED_BY(mutex_);
// Connectivity structure of our trajectories by IDs.
std::vector<std::vector<int>> connected_components_;
@ -196,8 +197,8 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
// Deque to keep references valid for the background computation when adding
// new data.
std::deque<mapping::TrajectoryNode::ConstantData> constant_node_data_;
std::vector<std::vector<mapping::TrajectoryNode>> trajectory_nodes_
GUARDED_BY(mutex_);
mapping::NestedVectorsById<mapping::TrajectoryNode, mapping::NodeId>
trajectory_nodes_ GUARDED_BY(mutex_);
int num_trajectory_nodes_ = 0 GUARDED_BY(mutex_);
// Current submap transforms used for displaying data.

View File

@ -100,23 +100,17 @@ void SparsePoseGraph::AddScan(
time, sensor::RangeData{Eigen::Vector3f::Zero(), {}, {}},
sensor::Compress(range_data_in_tracking), trajectory_id,
transform::Rigid3d::Identity()});
trajectory_nodes_.resize(
std::max<size_t>(trajectory_nodes_.size(), trajectory_id + 1));
trajectory_nodes_[trajectory_id].push_back(
trajectory_nodes_.Append(
trajectory_id,
mapping::TrajectoryNode{&constant_node_data_.back(), optimized_pose});
++num_trajectory_nodes_;
trajectory_connectivity_.Add(trajectory_id);
if (submap_ids_.count(insertion_submaps.back()) == 0) {
submap_states_.resize(
std::max<size_t>(submap_states_.size(), trajectory_id + 1));
auto& trajectory_submap_states = submap_states_.at(trajectory_id);
submap_ids_.emplace(
insertion_submaps.back(),
mapping::SubmapId{trajectory_id,
static_cast<int>(trajectory_submap_states.size())});
trajectory_submap_states.emplace_back();
trajectory_submap_states.back().submap = insertion_submaps.back();
const mapping::SubmapId submap_id =
submap_states_.Append(trajectory_id, SubmapState());
submap_ids_.emplace(insertion_submaps.back(), submap_id);
submap_states_.at(submap_id).submap = insertion_submaps.back();
}
const Submap* const finished_submap =
insertion_submaps.front()->finished ? insertion_submaps.front() : nullptr;
@ -168,16 +162,10 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
std::vector<mapping::TrajectoryNode> submap_nodes;
for (const mapping::NodeId& submap_node_id :
submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.node_ids) {
submap_states_.at(submap_id).node_ids) {
submap_nodes.push_back(mapping::TrajectoryNode{
trajectory_nodes_.at(submap_node_id.trajectory_id)
.at(submap_node_id.node_index)
.constant_data,
inverse_submap_pose * trajectory_nodes_.at(submap_node_id.trajectory_id)
.at(submap_node_id.node_index)
.pose});
trajectory_nodes_.at(submap_node_id).constant_data,
inverse_submap_pose * trajectory_nodes_.at(submap_node_id).pose});
}
// Only globally match against submaps not in this trajectory.
@ -196,14 +184,8 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
// yaw component will be handled by the matching procedure in the
// FastCorrelativeScanMatcher, and the given yaw is essentially ignored.
constraint_builder_.MaybeAddGlobalConstraint(
submap_id,
submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.submap,
node_id,
&trajectory_nodes_.at(node_id.trajectory_id)
.at(node_id.node_index)
.constant_data->range_data_3d.returns,
submap_id, submap_states_.at(submap_id).submap, node_id,
&trajectory_nodes_.at(node_id).constant_data->range_data_3d.returns,
submap_nodes, initial_relative_pose.rotation(),
&trajectory_connectivity_);
} else {
@ -215,14 +197,8 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
if (node_id.trajectory_id == submap_id.trajectory_id ||
scan_and_submap_trajectories_connected) {
constraint_builder_.MaybeAddConstraint(
submap_id,
submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.submap,
node_id,
&trajectory_nodes_.at(node_id.trajectory_id)
.at(node_id.node_index)
.constant_data->range_data_3d.returns,
submap_id, submap_states_.at(submap_id).submap, node_id,
&trajectory_nodes_.at(node_id).constant_data->range_data_3d.returns,
submap_nodes, initial_relative_pose);
}
}
@ -230,8 +206,7 @@ void SparsePoseGraph::ComputeConstraint(const mapping::NodeId& node_id,
void SparsePoseGraph::ComputeConstraintsForOldScans(const Submap* submap) {
const auto submap_id = GetSubmapId(submap);
const auto& submap_state =
submap_states_.at(submap_id.trajectory_id).at(submap_id.submap_index);
const auto& submap_state = submap_states_.at(submap_id);
const auto& node_data = optimization_problem_.node_data();
for (size_t trajectory_id = 0; trajectory_id != node_data.size();
@ -268,20 +243,14 @@ void SparsePoseGraph::ComputeConstraintsForScan(
.size())
: 0};
const mapping::TrajectoryNode::ConstantData* const scan_data =
trajectory_nodes_.at(node_id.trajectory_id)
.at(node_id.node_index)
.constant_data;
trajectory_nodes_.at(node_id).constant_data;
CHECK_EQ(scan_data->trajectory_id, matching_id.trajectory_id);
optimization_problem_.AddTrajectoryNode(matching_id.trajectory_id,
scan_data->time, optimized_pose);
for (const Submap* submap : insertion_submaps) {
const mapping::SubmapId submap_id = GetSubmapId(submap);
CHECK(!submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.finished);
submap_states_.at(submap_id.trajectory_id)
.at(submap_id.submap_index)
.node_ids.emplace(node_id);
CHECK(!submap_states_.at(submap_id).finished);
submap_states_.at(submap_id).node_ids.emplace(node_id);
// Unchanged covariance as (submap <- map) is a translation.
const transform::Rigid3d constraint_transform =
submap->local_pose.inverse() * pose;
@ -295,28 +264,22 @@ void SparsePoseGraph::ComputeConstraintsForScan(
Constraint::INTRA_SUBMAP});
}
for (size_t trajectory_id = 0; trajectory_id < submap_states_.size();
for (int trajectory_id = 0; trajectory_id < submap_states_.num_trajectories();
++trajectory_id) {
for (size_t submap_index = 0;
submap_index < submap_states_.at(trajectory_id).size();
for (int submap_index = 0;
submap_index < submap_states_.num_indices(trajectory_id);
++submap_index) {
if (submap_states_.at(trajectory_id).at(submap_index).finished) {
CHECK_EQ(submap_states_.at(trajectory_id)
.at(submap_index)
.node_ids.count(node_id),
0);
ComputeConstraint(node_id,
mapping::SubmapId{static_cast<int>(trajectory_id),
static_cast<int>(submap_index)});
const mapping::SubmapId submap_id{trajectory_id, submap_index};
if (submap_states_.at(submap_id).finished) {
CHECK_EQ(submap_states_.at(submap_id).node_ids.count(node_id), 0);
ComputeConstraint(node_id, submap_id);
}
}
}
if (finished_submap != nullptr) {
const mapping::SubmapId finished_submap_id = GetSubmapId(finished_submap);
SubmapState& finished_submap_state =
submap_states_.at(finished_submap_id.trajectory_id)
.at(finished_submap_id.submap_index);
SubmapState& finished_submap_state = submap_states_.at(finished_submap_id);
CHECK(!finished_submap_state.finished);
// We have a new completed submap, so we look into adding constraints for
// old scans.
@ -410,12 +373,14 @@ void SparsePoseGraph::RunOptimization() {
common::MutexLocker locker(&mutex_);
const auto& node_data = optimization_problem_.node_data();
for (size_t trajectory_id = 0; trajectory_id != node_data.size();
++trajectory_id) {
size_t node_index = 0;
const size_t num_nodes = trajectory_nodes_.at(trajectory_id).size();
for (; node_index != node_data[trajectory_id].size(); ++node_index) {
trajectory_nodes_[trajectory_id][node_index].pose =
for (int trajectory_id = 0;
trajectory_id != static_cast<int>(node_data.size()); ++trajectory_id) {
int node_index = 0;
const int num_nodes = trajectory_nodes_.num_indices(trajectory_id);
for (; node_index != static_cast<int>(node_data[trajectory_id].size());
++node_index) {
const mapping::NodeId node_id{trajectory_id, node_index};
trajectory_nodes_.at(node_id).pose =
node_data[trajectory_id][node_index].point_cloud_pose;
}
// Extrapolate all point cloud poses that were added later.
@ -427,9 +392,9 @@ void SparsePoseGraph::RunOptimization() {
const transform::Rigid3d extrapolation_transform =
new_submap_transforms.back() * old_submap_transforms.back().inverse();
for (; node_index < num_nodes; ++node_index) {
trajectory_nodes_[trajectory_id][node_index].pose =
extrapolation_transform *
trajectory_nodes_[trajectory_id][node_index].pose;
const mapping::NodeId node_id{trajectory_id, node_index};
trajectory_nodes_.at(node_id).pose =
extrapolation_transform * trajectory_nodes_.at(node_id).pose;
}
}
optimized_submap_transforms_ = optimization_problem_.submap_data();
@ -445,7 +410,7 @@ void SparsePoseGraph::RunOptimization() {
std::vector<std::vector<mapping::TrajectoryNode>>
SparsePoseGraph::GetTrajectoryNodes() {
common::MutexLocker locker(&mutex_);
return trajectory_nodes_;
return trajectory_nodes_.data();
}
std::vector<SparsePoseGraph::Constraint> SparsePoseGraph::constraints() {
@ -456,15 +421,17 @@ std::vector<SparsePoseGraph::Constraint> SparsePoseGraph::constraints() {
transform::Rigid3d SparsePoseGraph::GetLocalToGlobalTransform(
const int trajectory_id) {
common::MutexLocker locker(&mutex_);
if (submap_states_.size() <= static_cast<size_t>(trajectory_id) ||
submap_states_.at(trajectory_id).empty()) {
if (submap_states_.num_trajectories() <= trajectory_id ||
submap_states_.num_indices(trajectory_id) == 0) {
return transform::Rigid3d::Identity();
}
const auto extrapolated_submap_transforms =
ExtrapolateSubmapTransforms(optimized_submap_transforms_, trajectory_id);
return extrapolated_submap_transforms.back() *
submap_states_.at(trajectory_id)
.at(extrapolated_submap_transforms.size() - 1)
submap_states_
.at(mapping::SubmapId{
trajectory_id,
static_cast<int>(extrapolated_submap_transforms.size()) - 1})
.submap->local_pose.inverse();
}
@ -483,15 +450,19 @@ std::vector<transform::Rigid3d> SparsePoseGraph::GetSubmapTransforms(
std::vector<transform::Rigid3d> SparsePoseGraph::ExtrapolateSubmapTransforms(
const std::vector<std::vector<sparse_pose_graph::SubmapData>>&
submap_transforms,
const size_t trajectory_id) const {
if (trajectory_id >= submap_states_.size()) {
const int trajectory_id) const {
if (trajectory_id >= submap_states_.num_trajectories()) {
return {transform::Rigid3d::Identity()};
}
// Submaps for which we have optimized poses.
std::vector<transform::Rigid3d> result;
for (const auto& state : submap_states_.at(trajectory_id)) {
if (trajectory_id < submap_transforms.size() &&
for (int submap_index = 0;
submap_index != submap_states_.num_indices(trajectory_id);
++submap_index) {
const mapping::SubmapId submap_id{trajectory_id, submap_index};
const auto& state = submap_states_.at(submap_id);
if (static_cast<size_t>(trajectory_id) < submap_transforms.size() &&
result.size() < submap_transforms.at(trajectory_id).size()) {
// Submaps for which we have optimized poses.
result.push_back(
@ -501,10 +472,11 @@ std::vector<transform::Rigid3d> SparsePoseGraph::ExtrapolateSubmapTransforms(
} else {
// Extrapolate to the remaining submaps. Accessing 'local_pose' in Submaps
// is okay, since the member is const.
result.push_back(result.back() *
submap_states_.at(trajectory_id)
.at(result.size() - 1)
.submap->local_pose.inverse() *
const mapping::SubmapId previous_submap_id{
trajectory_id, static_cast<int>(result.size()) - 1};
result.push_back(
result.back() *
submap_states_.at(previous_submap_id).submap->local_pose.inverse() *
state.submap->local_pose);
}
}

View File

@ -149,7 +149,7 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
std::vector<transform::Rigid3d> ExtrapolateSubmapTransforms(
const std::vector<std::vector<sparse_pose_graph::SubmapData>>&
submap_transforms,
size_t trajectory_id) const REQUIRES(mutex_);
int trajectory_id) const REQUIRES(mutex_);
const mapping::proto::SparsePoseGraphOptions options_;
common::Mutex mutex_;
@ -181,7 +181,8 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
// before they take part in the background computations.
std::map<const mapping::Submap*, mapping::SubmapId> submap_ids_
GUARDED_BY(mutex_);
std::vector<std::vector<SubmapState>> submap_states_ GUARDED_BY(mutex_);
mapping::NestedVectorsById<SubmapState, mapping::SubmapId> submap_states_
GUARDED_BY(mutex_);
// Connectivity structure of our trajectories by IDs.
std::vector<std::vector<int>> connected_components_;
@ -193,8 +194,8 @@ class SparsePoseGraph : public mapping::SparsePoseGraph {
// Deque to keep references valid for the background computation when adding
// new data.
std::deque<mapping::TrajectoryNode::ConstantData> constant_node_data_;
std::vector<std::vector<mapping::TrajectoryNode>> trajectory_nodes_
GUARDED_BY(mutex_);
mapping::NestedVectorsById<mapping::TrajectoryNode, mapping::NodeId>
trajectory_nodes_ GUARDED_BY(mutex_);
int num_trajectory_nodes_ = 0 GUARDED_BY(mutex_);
// Current submap transforms used for displaying data.