Add relative transform error 2d documentation. (#1163)
parent
2f9ee597d0
commit
207979f209
|
@ -0,0 +1,94 @@
|
|||
.. Copyright 2018 The Cartographer Authors
|
||||
|
||||
.. Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
.. http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
.. Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
==============
|
||||
Cost functions
|
||||
==============
|
||||
|
||||
Relative Transform Error 2D
|
||||
===========================
|
||||
|
||||
Given two poses
|
||||
:math:`\mathbf{p_i} = [\mathbf{x_i}; \theta_i] = [x_i, y_i, \theta_i]^T`
|
||||
and :math:`\mathbf{p_j} = [\mathbf{x_j}; \theta_j] = [x_j, y_j, \theta_j]^T`
|
||||
the transformation :math:`\mathbf T` from the coordinate frame :math:`j` to the
|
||||
coordinate frame :math:`i` has the following form
|
||||
|
||||
.. math::
|
||||
\mathbf{T}( \mathbf{p_i},\mathbf{p_j}) =
|
||||
\left[
|
||||
\begin{array}{c}
|
||||
R(\theta_i)^T (\mathbf x_j - \mathbf x_i) \\
|
||||
\theta_j-\theta_i
|
||||
\end{array}
|
||||
\right]
|
||||
|
||||
where :math:`R(\theta_i)^T` is the rotation matrix of :math:`\theta_i`.
|
||||
|
||||
The weighted error :math:`f:\mathbb R^6 \mapsto \mathbb R^3` between
|
||||
:math:`\mathbf T` and the measured transformation :math:`\mathbf T_{ij}^m =
|
||||
[\mathbf x_{ij}^m; \theta_j^m]` from the coordinate frame :math:`j` to the
|
||||
coordinate frame :math:`i` can be computed as
|
||||
|
||||
.. math::
|
||||
\mathbf f( \mathbf{p_i},\mathbf{p_j}) =
|
||||
\left[
|
||||
w_{\text{t}} \; w_{\text{r}}
|
||||
\right]
|
||||
\left(
|
||||
\mathbf T_{ij}^m - \mathbf T( \mathbf{p_i},\mathbf{p_j})
|
||||
\right) =
|
||||
\left[
|
||||
\begin{array}{c}
|
||||
w_{\text{t}}\left(
|
||||
\mathbf x_{ij}^m - R(\theta_i)^T (\mathbf x_j - \mathbf x_i)
|
||||
\right) \\
|
||||
w_{\text{r}}\left(
|
||||
\mathrm{clamp}(\theta_{ij}^m - (\theta_j-\theta_i))
|
||||
\right)
|
||||
\end{array}
|
||||
\right]
|
||||
|
||||
where :math:`w_t` and :math:`w_r` are weights for translation and rotation
|
||||
respectively and :math:`\mathrm{clamp}: \mathbb R \mapsto [-\pi, \pi]`
|
||||
normalizes the angle difference.
|
||||
|
||||
Jacobian matrix :math:`J_f` is given by:
|
||||
|
||||
.. math::
|
||||
\begin{align}
|
||||
J_f( \mathbf{p_i},\mathbf{p_j}) &=
|
||||
\left[
|
||||
\frac{\partial\mathbf f}{\partial x_i} \quad
|
||||
\frac{\partial\mathbf f}{\partial y_i} \quad
|
||||
\frac{\partial\mathbf f}{\partial \theta_i} \quad
|
||||
\frac{\partial\mathbf f}{\partial x_j} \quad
|
||||
\frac{\partial\mathbf f}{\partial y_j} \quad
|
||||
\frac{\partial\mathbf f}{\partial \theta_j}
|
||||
\right] \\
|
||||
&\mathstrut \\
|
||||
&=
|
||||
\left[
|
||||
\begin{array}{cccc}
|
||||
w_{\text{t}} R^T(\theta_i)
|
||||
& -w_{\text{t}} {\frac{\mathrm d R^T(\theta_i)}{\mathrm d \theta}}(\mathbf x_j - \mathbf x_i)
|
||||
& -w_{\text{t}} R^T(\theta_i)
|
||||
& \mathbf{0} \\
|
||||
\mathbf{0}^T
|
||||
& w_{\text{r}}
|
||||
& \mathbf{0}^T
|
||||
& -w_{\text{r}}
|
||||
\end{array}
|
||||
\right]
|
||||
\end{align}
|
|
@ -23,6 +23,7 @@ Cartographer
|
|||
configuration
|
||||
evaluation
|
||||
terminology
|
||||
cost_functions
|
||||
|
||||
`Cartographer`_ is a system that provides real-time simultaneous localization
|
||||
and mapping (`SLAM`_) in 2D and 3D across multiple platforms and sensor
|
||||
|
|
Loading…
Reference in New Issue