Add rotational score histograms in 3D. ()

master
Wolfgang Hess 2017-07-11 11:59:42 +02:00 committed by GitHub
parent 167047173c
commit 10a19d0a3f
5 changed files with 48 additions and 30 deletions

View File

@ -106,21 +106,23 @@ bool FastCorrelativeScanMatcher::Match(
const transform::Rigid3d& initial_pose_estimate, const transform::Rigid3d& initial_pose_estimate,
const sensor::PointCloud& coarse_point_cloud, const sensor::PointCloud& coarse_point_cloud,
const sensor::PointCloud& fine_point_cloud, const float min_score, const sensor::PointCloud& fine_point_cloud, const float min_score,
float* const score, transform::Rigid3d* const pose_estimate) const { float* const score, transform::Rigid3d* const pose_estimate,
float* const rotational_score) const {
const SearchParameters search_parameters{ const SearchParameters search_parameters{
common::RoundToInt(options_.linear_xy_search_window() / resolution_), common::RoundToInt(options_.linear_xy_search_window() / resolution_),
common::RoundToInt(options_.linear_z_search_window() / resolution_), common::RoundToInt(options_.linear_z_search_window() / resolution_),
options_.angular_search_window()}; options_.angular_search_window()};
return MatchWithSearchParameters(search_parameters, initial_pose_estimate, return MatchWithSearchParameters(
coarse_point_cloud, fine_point_cloud, search_parameters, initial_pose_estimate, coarse_point_cloud,
min_score, score, pose_estimate); fine_point_cloud, min_score, score, pose_estimate, rotational_score);
} }
bool FastCorrelativeScanMatcher::MatchFullSubmap( bool FastCorrelativeScanMatcher::MatchFullSubmap(
const Eigen::Quaterniond& gravity_alignment, const Eigen::Quaterniond& gravity_alignment,
const sensor::PointCloud& coarse_point_cloud, const sensor::PointCloud& coarse_point_cloud,
const sensor::PointCloud& fine_point_cloud, const float min_score, const sensor::PointCloud& fine_point_cloud, const float min_score,
float* const score, transform::Rigid3d* const pose_estimate) const { float* const score, transform::Rigid3d* const pose_estimate,
float* const rotational_score) const {
const transform::Rigid3d initial_pose_estimate(Eigen::Vector3d::Zero(), const transform::Rigid3d initial_pose_estimate(Eigen::Vector3d::Zero(),
gravity_alignment); gravity_alignment);
float max_point_distance = 0.f; float max_point_distance = 0.f;
@ -132,9 +134,9 @@ bool FastCorrelativeScanMatcher::MatchFullSubmap(
common::RoundToInt(max_point_distance / resolution_ + 0.5f); common::RoundToInt(max_point_distance / resolution_ + 0.5f);
const SearchParameters search_parameters{linear_window_size, const SearchParameters search_parameters{linear_window_size,
linear_window_size, M_PI}; linear_window_size, M_PI};
return MatchWithSearchParameters(search_parameters, initial_pose_estimate, return MatchWithSearchParameters(
coarse_point_cloud, fine_point_cloud, search_parameters, initial_pose_estimate, coarse_point_cloud,
min_score, score, pose_estimate); fine_point_cloud, min_score, score, pose_estimate, rotational_score);
} }
bool FastCorrelativeScanMatcher::MatchWithSearchParameters( bool FastCorrelativeScanMatcher::MatchWithSearchParameters(
@ -142,7 +144,8 @@ bool FastCorrelativeScanMatcher::MatchWithSearchParameters(
const transform::Rigid3d& initial_pose_estimate, const transform::Rigid3d& initial_pose_estimate,
const sensor::PointCloud& coarse_point_cloud, const sensor::PointCloud& coarse_point_cloud,
const sensor::PointCloud& fine_point_cloud, const float min_score, const sensor::PointCloud& fine_point_cloud, const float min_score,
float* const score, transform::Rigid3d* const pose_estimate) const { float* const score, transform::Rigid3d* const pose_estimate,
float* const rotational_score) const {
CHECK_NOTNULL(score); CHECK_NOTNULL(score);
CHECK_NOTNULL(pose_estimate); CHECK_NOTNULL(pose_estimate);
@ -158,12 +161,14 @@ bool FastCorrelativeScanMatcher::MatchWithSearchParameters(
precomputation_grid_stack_->max_depth(), min_score); precomputation_grid_stack_->max_depth(), min_score);
if (best_candidate.score > min_score) { if (best_candidate.score > min_score) {
*score = best_candidate.score; *score = best_candidate.score;
const auto& discrete_scan = discrete_scans[best_candidate.scan_index];
*pose_estimate = *pose_estimate =
(transform::Rigid3f( (transform::Rigid3f(
resolution_ * best_candidate.offset.matrix().cast<float>(), resolution_ * best_candidate.offset.matrix().cast<float>(),
Eigen::Quaternionf::Identity()) * Eigen::Quaternionf::Identity()) *
discrete_scans[best_candidate.scan_index].pose) discrete_scan.pose)
.cast<double>(); .cast<double>();
*rotational_score = discrete_scan.rotational_score;
return true; return true;
} }
return false; return false;
@ -171,8 +176,8 @@ bool FastCorrelativeScanMatcher::MatchWithSearchParameters(
DiscreteScan FastCorrelativeScanMatcher::DiscretizeScan( DiscreteScan FastCorrelativeScanMatcher::DiscretizeScan(
const FastCorrelativeScanMatcher::SearchParameters& search_parameters, const FastCorrelativeScanMatcher::SearchParameters& search_parameters,
const sensor::PointCloud& point_cloud, const sensor::PointCloud& point_cloud, const transform::Rigid3f& pose,
const transform::Rigid3f& pose) const { const float rotational_score) const {
std::vector<std::vector<Eigen::Array3i>> cell_indices_per_depth; std::vector<std::vector<Eigen::Array3i>> cell_indices_per_depth;
const PrecomputationGrid& original_grid = precomputation_grid_stack_->Get(0); const PrecomputationGrid& original_grid = precomputation_grid_stack_->Get(0);
std::vector<Eigen::Array3i> full_resolution_cell_indices; std::vector<Eigen::Array3i> full_resolution_cell_indices;
@ -210,7 +215,7 @@ DiscreteScan FastCorrelativeScanMatcher::DiscretizeScan(
low_resolution_cell_at_start - low_resolution_search_window_start); low_resolution_cell_at_start - low_resolution_search_window_start);
} }
} }
return DiscreteScan{pose, cell_indices_per_depth}; return DiscreteScan{pose, cell_indices_per_depth, rotational_score};
} }
std::vector<DiscreteScan> FastCorrelativeScanMatcher::GenerateDiscreteScans( std::vector<DiscreteScan> FastCorrelativeScanMatcher::GenerateDiscreteScans(
@ -253,7 +258,7 @@ std::vector<DiscreteScan> FastCorrelativeScanMatcher::GenerateDiscreteScans(
transform::AngleAxisVectorToRotationQuaternion(angle_axis) * transform::AngleAxisVectorToRotationQuaternion(angle_axis) *
initial_pose.rotation()); initial_pose.rotation());
result.push_back( result.push_back(
DiscretizeScan(search_parameters, coarse_point_cloud, pose)); DiscretizeScan(search_parameters, coarse_point_cloud, pose, scores[i]));
} }
return result; return result;
} }

View File

@ -46,6 +46,7 @@ struct DiscreteScan {
transform::Rigid3f pose; transform::Rigid3f pose;
// Contains a vector of discretized scans for each 'depth'. // Contains a vector of discretized scans for each 'depth'.
std::vector<std::vector<Eigen::Array3i>> cell_indices_per_depth; std::vector<std::vector<Eigen::Array3i>> cell_indices_per_depth;
float rotational_score;
}; };
struct Candidate { struct Candidate {
@ -81,24 +82,27 @@ class FastCorrelativeScanMatcher {
// Aligns 'coarse_point_cloud' within the 'hybrid_grid' given an // Aligns 'coarse_point_cloud' within the 'hybrid_grid' given an
// 'initial_pose_estimate'. If a score above 'min_score' (excluding equality) // 'initial_pose_estimate'. If a score above 'min_score' (excluding equality)
// is possible, true is returned, and 'score' and 'pose_estimate' are updated // is possible, true is returned, and 'score', 'pose_estimate', and
// with the result. 'fine_point_cloud' is used to compute the rotational scan // 'rotational_score' are updated with the result. 'fine_point_cloud' is used
// matcher score. // to compute the rotational scan matcher score.
bool Match(const transform::Rigid3d& initial_pose_estimate, bool Match(const transform::Rigid3d& initial_pose_estimate,
const sensor::PointCloud& coarse_point_cloud, const sensor::PointCloud& coarse_point_cloud,
const sensor::PointCloud& fine_point_cloud, float min_score, const sensor::PointCloud& fine_point_cloud, float min_score,
float* score, transform::Rigid3d* pose_estimate) const; float* score, transform::Rigid3d* pose_estimate,
float* rotational_score) const;
// Aligns 'coarse_point_cloud' within the 'hybrid_grid' given a rotation which // Aligns 'coarse_point_cloud' within the 'hybrid_grid' given a rotation which
// is expected to be approximately gravity aligned. If a score above // is expected to be approximately gravity aligned. If a score above
// 'min_score' (excluding equality) is possible, true is returned, and 'score' // 'min_score' (excluding equality) is possible, true is returned, and
// and 'pose_estimate' are updated with the result. 'fine_point_cloud' is used // 'score', 'pose_estimate', and 'rotational_score' are updated with the
// to compute the rotational scan matcher score. // result. 'fine_point_cloud' is used to compute the rotational scan matcher
// score.
bool MatchFullSubmap(const Eigen::Quaterniond& gravity_alignment, bool MatchFullSubmap(const Eigen::Quaterniond& gravity_alignment,
const sensor::PointCloud& coarse_point_cloud, const sensor::PointCloud& coarse_point_cloud,
const sensor::PointCloud& fine_point_cloud, const sensor::PointCloud& fine_point_cloud,
float min_score, float* score, float min_score, float* score,
transform::Rigid3d* pose_estimate) const; transform::Rigid3d* pose_estimate,
float* rotational_score) const;
private: private:
struct SearchParameters { struct SearchParameters {
@ -112,10 +116,11 @@ class FastCorrelativeScanMatcher {
const transform::Rigid3d& initial_pose_estimate, const transform::Rigid3d& initial_pose_estimate,
const sensor::PointCloud& coarse_point_cloud, const sensor::PointCloud& coarse_point_cloud,
const sensor::PointCloud& fine_point_cloud, float min_score, float* score, const sensor::PointCloud& fine_point_cloud, float min_score, float* score,
transform::Rigid3d* pose_estimate) const; transform::Rigid3d* pose_estimate, float* rotational_score) const;
DiscreteScan DiscretizeScan(const SearchParameters& search_parameters, DiscreteScan DiscretizeScan(const SearchParameters& search_parameters,
const sensor::PointCloud& point_cloud, const sensor::PointCloud& point_cloud,
const transform::Rigid3f& pose) const; const transform::Rigid3f& pose,
float rotational_score) const;
std::vector<DiscreteScan> GenerateDiscreteScans( std::vector<DiscreteScan> GenerateDiscreteScans(
const SearchParameters& search_parameters, const SearchParameters& search_parameters,
const sensor::PointCloud& coarse_point_cloud, const sensor::PointCloud& coarse_point_cloud,

View File

@ -98,12 +98,14 @@ TEST(FastCorrelativeScanMatcherTest, CorrectPose) {
FastCorrelativeScanMatcher fast_correlative_scan_matcher(hybrid_grid, {}, FastCorrelativeScanMatcher fast_correlative_scan_matcher(hybrid_grid, {},
options); options);
float score = 0.f;
transform::Rigid3d pose_estimate; transform::Rigid3d pose_estimate;
float score; float rotational_score = 0.f;
EXPECT_TRUE(fast_correlative_scan_matcher.Match( EXPECT_TRUE(fast_correlative_scan_matcher.Match(
transform::Rigid3d::Identity(), point_cloud, point_cloud, kMinScore, transform::Rigid3d::Identity(), point_cloud, point_cloud, kMinScore,
&score, &pose_estimate)); &score, &pose_estimate, &rotational_score));
EXPECT_LT(kMinScore, score); EXPECT_LT(kMinScore, score);
EXPECT_LT(0.09f, rotational_score);
EXPECT_THAT(expected_pose, EXPECT_THAT(expected_pose,
transform::IsNearly(pose_estimate.cast<float>(), 0.05f)) transform::IsNearly(pose_estimate.cast<float>(), 0.05f))
<< "Actual: " << transform::ToProto(pose_estimate).DebugString() << "Actual: " << transform::ToProto(pose_estimate).DebugString()

View File

@ -181,8 +181,9 @@ void ConstraintBuilder::ComputeConstraint(
// The 'constraint_transform' (submap i <- scan j) is computed from: // The 'constraint_transform' (submap i <- scan j) is computed from:
// - a 'filtered_point_cloud' in scan j and // - a 'filtered_point_cloud' in scan j and
// - the initial guess 'initial_pose' (submap i <- scan j). // - the initial guess 'initial_pose' (submap i <- scan j).
float score = 0.; float score = 0.f;
transform::Rigid3d pose_estimate; transform::Rigid3d pose_estimate;
float rotational_score = 0.f;
// Compute 'pose_estimate' in three stages: // Compute 'pose_estimate' in three stages:
// 1. Fast estimate using the fast correlative scan matcher. // 1. Fast estimate using the fast correlative scan matcher.
@ -191,7 +192,8 @@ void ConstraintBuilder::ComputeConstraint(
if (match_full_submap) { if (match_full_submap) {
if (submap_scan_matcher->fast_correlative_scan_matcher->MatchFullSubmap( if (submap_scan_matcher->fast_correlative_scan_matcher->MatchFullSubmap(
initial_pose.rotation(), filtered_point_cloud, point_cloud, initial_pose.rotation(), filtered_point_cloud, point_cloud,
options_.global_localization_min_score(), &score, &pose_estimate)) { options_.global_localization_min_score(), &score, &pose_estimate,
&rotational_score)) {
CHECK_GT(score, options_.global_localization_min_score()); CHECK_GT(score, options_.global_localization_min_score());
CHECK_GE(node_id.trajectory_id, 0); CHECK_GE(node_id.trajectory_id, 0);
CHECK_GE(submap_id.trajectory_id, 0); CHECK_GE(submap_id.trajectory_id, 0);
@ -203,7 +205,7 @@ void ConstraintBuilder::ComputeConstraint(
} else { } else {
if (submap_scan_matcher->fast_correlative_scan_matcher->Match( if (submap_scan_matcher->fast_correlative_scan_matcher->Match(
initial_pose, filtered_point_cloud, point_cloud, initial_pose, filtered_point_cloud, point_cloud,
options_.min_score(), &score, &pose_estimate)) { options_.min_score(), &score, &pose_estimate, &rotational_score)) {
// We've reported a successful local match. // We've reported a successful local match.
CHECK_GT(score, options_.min_score()); CHECK_GT(score, options_.min_score());
} else { } else {
@ -213,6 +215,7 @@ void ConstraintBuilder::ComputeConstraint(
{ {
common::MutexLocker locker(&mutex_); common::MutexLocker locker(&mutex_);
score_histogram_.Add(score); score_histogram_.Add(score);
rotational_score_histogram_.Add(rotational_score);
} }
// Use the CSM estimate as both the initial and previous pose. This has the // Use the CSM estimate as both the initial and previous pose. This has the
@ -282,6 +285,8 @@ void ConstraintBuilder::FinishComputation(const int computation_index) {
LOG(INFO) << constraints_.size() << " computations resulted in " LOG(INFO) << constraints_.size() << " computations resulted in "
<< result.size() << " additional constraints."; << result.size() << " additional constraints.";
LOG(INFO) << "Score histogram:\n" << score_histogram_.ToString(10); LOG(INFO) << "Score histogram:\n" << score_histogram_.ToString(10);
LOG(INFO) << "Rotational score histogram:\n"
<< rotational_score_histogram_.ToString(10);
} }
constraints_.clear(); constraints_.clear();
callback = std::move(when_done_); callback = std::move(when_done_);

View File

@ -185,8 +185,9 @@ class ConstraintBuilder {
const sensor::AdaptiveVoxelFilter adaptive_voxel_filter_; const sensor::AdaptiveVoxelFilter adaptive_voxel_filter_;
scan_matching::CeresScanMatcher ceres_scan_matcher_; scan_matching::CeresScanMatcher ceres_scan_matcher_;
// Histogram of scan matcher scores. // Histograms of scan matcher scores.
common::Histogram score_histogram_ GUARDED_BY(mutex_); common::Histogram score_histogram_ GUARDED_BY(mutex_);
common::Histogram rotational_score_histogram_ GUARDED_BY(mutex_);
}; };
} // namespace sparse_pose_graph } // namespace sparse_pose_graph