[GenericPoseGraph] Add RelativePoseCost2D. (#1295)

This is the implementation of the ceres::CostFunction that uses the new proto definition. It is tested using the Autodiff version.
master
Alexander Belyaev 2018-07-18 15:58:33 +02:00 committed by Wally B. Feed
parent ce9c567e3c
commit 0ab591aa01
4 changed files with 319 additions and 4 deletions

View File

@ -0,0 +1,94 @@
/*
* Copyright 2018 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/pose_graph/constraint/cost_function/relative_pose_cost_2d.h"
namespace cartographer {
namespace pose_graph {
RelativePoseCost2D::RelativePoseCost2D(
const proto::RelativePose2D::Parameters& parameters)
: translation_weight_(parameters.translation_weight()),
rotation_weight_(parameters.rotation_weight()),
first_T_second_(transform::ToRigid2(parameters.first_t_second())) {}
proto::RelativePose2D::Parameters RelativePoseCost2D::ToProto() const {
proto::RelativePose2D::Parameters parameters;
parameters.set_translation_weight(translation_weight_);
parameters.set_rotation_weight(rotation_weight_);
*parameters.mutable_first_t_second() = transform::ToProto(first_T_second_);
return parameters;
}
bool RelativePoseCost2D::Evaluate(double const* const* parameters,
double* residuals, double** jacobians) const {
double const* start = parameters[0];
double const* end = parameters[1];
const double cos_start_rotation = cos(start[2]);
const double sin_start_rotation = sin(start[2]);
const double delta_x = end[0] - start[0];
const double delta_y = end[1] - start[1];
residuals[0] =
translation_weight_ *
(first_T_second_.translation().x() -
(cos_start_rotation * delta_x + sin_start_rotation * delta_y));
residuals[1] =
translation_weight_ *
(first_T_second_.translation().y() -
(-sin_start_rotation * delta_x + cos_start_rotation * delta_y));
residuals[2] = rotation_weight_ *
common::NormalizeAngleDifference(
first_T_second_.rotation().angle() - (end[2] - start[2]));
if (jacobians == nullptr) return true;
const double weighted_cos_start_rotation =
translation_weight_ * cos_start_rotation;
const double weighted_sin_start_rotation =
translation_weight_ * sin_start_rotation;
// Jacobians in Ceres are ordered by the parameter blocks:
// jacobian[i] = [(dr_0 / dx_i)^T, ..., (dr_n / dx_i)^T].
if (jacobians[0] != nullptr) {
jacobians[0][0] = weighted_cos_start_rotation;
jacobians[0][1] = weighted_sin_start_rotation;
jacobians[0][2] = weighted_sin_start_rotation * delta_x -
weighted_cos_start_rotation * delta_y;
jacobians[0][3] = -weighted_sin_start_rotation;
jacobians[0][4] = weighted_cos_start_rotation;
jacobians[0][5] = weighted_cos_start_rotation * delta_x +
weighted_sin_start_rotation * delta_y;
jacobians[0][6] = 0;
jacobians[0][7] = 0;
jacobians[0][8] = rotation_weight_;
}
if (jacobians[1] != nullptr) {
jacobians[1][0] = -weighted_cos_start_rotation;
jacobians[1][1] = -weighted_sin_start_rotation;
jacobians[1][2] = 0;
jacobians[1][3] = weighted_sin_start_rotation;
jacobians[1][4] = -weighted_cos_start_rotation;
jacobians[1][5] = 0;
jacobians[1][6] = 0;
jacobians[1][7] = 0;
jacobians[1][8] = -rotation_weight_;
}
return true;
}
} // namespace pose_graph
} // namespace cartographer

View File

@ -0,0 +1,51 @@
/*
* Copyright 2018 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_POSE_GRAPH_CONSTRAINT_COST_FUNCTION_RELATIVE_POSE_COST_2D_H_
#define CARTOGRAPHER_POSE_GRAPH_CONSTRAINT_COST_FUNCTION_RELATIVE_POSE_COST_2D_H_
#include "cartographer/pose_graph/proto/cost_function.pb.h"
#include "cartographer/transform/transform.h"
#include "ceres/sized_cost_function.h"
namespace cartographer {
namespace pose_graph {
class RelativePoseCost2D
: public ceres::SizedCostFunction<3 /* number of residuals */,
3 /* size of first pose */,
3 /* size of second pose */> {
public:
explicit RelativePoseCost2D(
const proto::RelativePose2D::Parameters& parameters);
proto::RelativePose2D::Parameters ToProto() const;
// Parameters are packed as [first_pose_2d, second_pose_2d], where each 2D
// pose is [translation_x, translation_y, rotation].
bool Evaluate(double const* const* parameters, double* residuals,
double** jacobians) const final;
private:
const double translation_weight_;
const double rotation_weight_;
const transform::Rigid2d first_T_second_;
};
} // namespace pose_graph
} // namespace cartographer
#endif // CARTOGRAPHER_POSE_GRAPH_CONSTRAINT_COST_FUNCTION_RELATIVE_POSE_COST_2D_H_

View File

@ -0,0 +1,167 @@
/*
* Copyright 2018 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/pose_graph/constraint/cost_function/relative_pose_cost_2d.h"
#include "cartographer/common/make_unique.h"
#include "cartographer/mapping/internal/optimization/cost_functions/cost_helpers.h"
#include "gmock/gmock.h"
#include "google/protobuf/text_format.h"
namespace cartographer {
namespace pose_graph {
namespace {
constexpr int kPoseDimension = 3;
constexpr int kResidualsCount = 3;
constexpr int kParameterBlocksCount = 2;
constexpr int kJacobianColDimension = kResidualsCount * kPoseDimension;
using ::google::protobuf::TextFormat;
using ::testing::ElementsAre;
using ResidualType = std::array<double, kResidualsCount>;
using JacobianType = std::array<std::array<double, kJacobianColDimension>,
kParameterBlocksCount>;
// This is the autodiff version of the RelativePoseCost2D.
//
// TODO(pifon): Use the gradient_checker from Ceres.
class AutoDiffRelativePoseCost {
public:
explicit AutoDiffRelativePoseCost(
const proto::RelativePose2D::Parameters& parameters)
: translation_weight_(parameters.translation_weight()),
rotation_weight_(parameters.rotation_weight()),
first_T_second_(transform::ToRigid2(parameters.first_t_second())) {}
template <typename T>
bool operator()(const T* const start_pose, const T* const end_pose,
T* e) const {
const std::array<T, 3> error = mapping::optimization::ScaleError(
mapping::optimization::ComputeUnscaledError(first_T_second_, start_pose,
end_pose),
translation_weight_, rotation_weight_);
std::copy(std::begin(error), std::end(error), e);
return true;
}
private:
const double translation_weight_;
const double rotation_weight_;
const transform::Rigid2d first_T_second_;
};
class RelativePoseCost2DTest : public ::testing::Test {
public:
RelativePoseCost2DTest() {
proto::RelativePose2D::Parameters parameters;
constexpr char kParameters[] = R"PROTO(
first_t_second {
translation: { x: 1 y: 1 }
rotation: -2.214297
}
translation_weight: 1
rotation_weight: 10
)PROTO";
EXPECT_TRUE(TextFormat::ParseFromString(kParameters, &parameters));
auto_diff_cost_ = common::make_unique<RelativePoseCost2D>(parameters);
analytical_cost_ = common::make_unique<
ceres::AutoDiffCostFunction<AutoDiffRelativePoseCost, kResidualsCount,
kPoseDimension, kPoseDimension>>(
new AutoDiffRelativePoseCost(parameters));
for (int i = 0; i < kParameterBlocksCount; ++i) {
jacobian_ptrs_[i] = jacobian_[i].data();
}
}
std::pair<const ResidualType&, const JacobianType&>
EvaluateRelativePoseCost2D(
const std::array<const double*, 2>& parameter_blocks) {
return Evaluate(parameter_blocks, analytical_cost_);
}
std::pair<const ResidualType&, const JacobianType&> EvaluateAutoDiffCost(
const std::array<const double*, 2>& parameter_blocks) {
return Evaluate(parameter_blocks, auto_diff_cost_);
}
private:
std::pair<const ResidualType&, const JacobianType&> Evaluate(
const std::array<const double*, 2>& parameter_blocks,
const std::unique_ptr<ceres::CostFunction>& cost_function) {
cost_function->Evaluate(parameter_blocks.data(), residuals_.data(),
jacobian_ptrs_.data());
return std::make_pair(std::cref(residuals_), std::cref(jacobian_));
}
ResidualType residuals_;
JacobianType jacobian_;
std::array<double*, kParameterBlocksCount> jacobian_ptrs_;
std::unique_ptr<ceres::CostFunction> auto_diff_cost_;
std::unique_ptr<ceres::CostFunction> analytical_cost_;
};
::testing::Matcher<double> Near(double expected) {
constexpr double kPrecision = 1e-05;
return ::testing::DoubleNear(expected, kPrecision);
}
TEST_F(RelativePoseCost2DTest, CompareAutoDiffAndAnalytical) {
std::array<double, kPoseDimension> start_pose{{1., 1., 1.}};
std::array<double, kPoseDimension> end_pose{{10., 1., 100.}};
std::array<const double*, kParameterBlocksCount> parameter_blocks{
{start_pose.data(), end_pose.data()}};
ResidualType auto_diff_residual, analytical_residual;
JacobianType auto_diff_jacobian, analytical_jacobian;
std::tie(auto_diff_residual, auto_diff_jacobian) =
EvaluateAutoDiffCost(parameter_blocks);
std::tie(analytical_residual, analytical_jacobian) =
EvaluateRelativePoseCost2D(parameter_blocks);
for (int i = 0; i < kResidualsCount; ++i) {
EXPECT_THAT(auto_diff_residual[i], Near(analytical_residual[i]));
}
for (int i = 0; i < kParameterBlocksCount; ++i) {
for (int j = 0; j < kJacobianColDimension; ++j) {
EXPECT_THAT(auto_diff_jacobian[i][j], Near(analytical_jacobian[i][j]));
}
}
}
TEST_F(RelativePoseCost2DTest, EvaluateRelativePoseCost2D) {
std::array<double, kPoseDimension> start_pose{{1., 1., 1.}};
std::array<double, kPoseDimension> end_pose{{10., 1., 100.}};
std::array<const double*, kParameterBlocksCount> parameter_blocks{
{start_pose.data(), end_pose.data()}};
auto residuals_and_jacobian = EvaluateRelativePoseCost2D(parameter_blocks);
EXPECT_THAT(residuals_and_jacobian.first,
ElementsAre(Near(-3.86272), Near(8.57324), Near(-6.83333)));
EXPECT_THAT(
residuals_and_jacobian.second,
ElementsAre(
ElementsAre(Near(0.540302), Near(0.841471), Near(7.57324),
Near(-0.841471), Near(0.540302), Near(4.86272), Near(0),
Near(0), Near(10)),
ElementsAre(Near(-0.540302), Near(-0.841471), Near(0), Near(0.841471),
Near(-0.540302), Near(0), Near(0), Near(0), Near(-10))));
}
} // namespace
} // namespace pose_graph
} // namespace cartographer

View File

@ -23,16 +23,19 @@ message RelativePose2D {
NodeId first = 1;
NodeId second = 2;
transform.proto.Rigid2d first_T_second = 3;
double translation_weight = 4;
double rotation_weight = 5;
message Parameters {
transform.proto.Rigid2d first_t_second = 1;
double translation_weight = 2;
double rotation_weight = 3;
}
Parameters parameters = 3;
}
message RelativePose3D {
NodeId first = 1;
NodeId second = 2;
transform.proto.Rigid3d first_T_second = 3;
transform.proto.Rigid3d first_t_second = 3;
double translation_weight = 4;
double rotation_weight = 5;
}