TensorRT-Demo/eval_ssd.py

105 lines
3.3 KiB
Python

"""eval_ssd.py
This script is for evaluating mAP (accuracy) of SSD models. The
model being evaluated could be either a TensorFlow frozen inference
graph (pb) or a TensorRT engine.
"""
import os
import sys
import json
import argparse
import cv2
import pycuda.autoinit # This is needed for initializing CUDA driver
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from progressbar import progressbar
from utils.ssd import TrtSSD
from utils.ssd_tf import TfSSD
INPUT_HW = (300, 300)
SUPPORTED_MODELS = [
'ssd_mobilenet_v1_coco',
'ssd_mobilenet_v2_coco',
]
HOME = os.environ['HOME']
VAL_IMGS_DIR = HOME + '/data/coco/images/val2017'
VAL_ANNOTATIONS = HOME + '/data/coco/annotations/instances_val2017.json'
def parse_args():
"""Parse input arguments."""
desc = 'Evaluate mAP of SSD model'
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--mode', type=str, default='trt',
choices=['tf', 'trt'])
parser.add_argument('--imgs_dir', type=str, default=VAL_IMGS_DIR,
help='directory of validation images [%s]' % VAL_IMGS_DIR)
parser.add_argument('--annotations', type=str, default=VAL_ANNOTATIONS,
help='groundtruth annotations [%s]' % VAL_ANNOTATIONS)
parser.add_argument('model', type=str, choices=SUPPORTED_MODELS)
args = parser.parse_args()
return args
def check_args(args):
"""Check and make sure command-line arguments are valid."""
if not os.path.isdir(args.imgs_dir):
sys.exit('%s is not a valid directory' % args.imgs_dir)
if not os.path.isfile(args.annotations):
sys.exit('%s is not a valid file' % args.annotations)
def generate_results(ssd, imgs_dir, jpgs, results_file):
"""Run detection on each jpg and write results to file."""
results = []
for jpg in progressbar(jpgs):
img = cv2.imread(os.path.join(imgs_dir, jpg))
image_id = int(jpg.split('.')[0].split('_')[-1])
boxes, confs, clss = ssd.detect(img, conf_th=1e-2)
for box, conf, cls in zip(boxes, confs, clss):
x = float(box[0])
y = float(box[1])
w = float(box[2] - box[0] + 1)
h = float(box[3] - box[1] + 1)
results.append({'image_id': image_id,
'category_id': int(cls),
'bbox': [x, y, w, h],
'score': float(conf)})
with open(results_file, 'w') as f:
f.write(json.dumps(results, indent=4))
def main():
args = parse_args()
check_args(args)
results_file = 'ssd/results_%s_%s.json' % (args.model, args.mode)
if args.mode == 'trt':
ssd = TrtSSD(args.model, INPUT_HW)
else:
ssd = TfSSD(args.model, INPUT_HW)
jpgs = [j for j in os.listdir(args.imgs_dir) if j.endswith('.jpg')]
generate_results(ssd, args.imgs_dir, jpgs, results_file)
# Run COCO mAP evaluation
# Reference: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO(args.annotations)
cocoDt = cocoGt.loadRes(results_file)
imgIds = sorted(cocoGt.getImgIds())
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
if __name__ == '__main__':
main()