370 lines
4.9 KiB
Plaintext
370 lines
4.9 KiB
Plaintext
name: "RNet"
|
|
layer
|
|
{
|
|
name: "data"
|
|
type: "Input"
|
|
top: "data"
|
|
input_param{shape:{dim:1 dim:3 dim:24 dim:24}}
|
|
}
|
|
|
|
layer {
|
|
name: "conv1"
|
|
type: "Convolution"
|
|
bottom: "data"
|
|
top: "conv1"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 28
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "xavier"
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu1_1"
|
|
type: "ReLU"
|
|
bottom: "conv1"
|
|
top: "conv1_1"
|
|
propagate_down: true
|
|
}
|
|
|
|
layer {
|
|
name: "scale1_1"
|
|
bottom: "conv1"
|
|
top: "conv1_2"
|
|
type: "Scale"
|
|
scale_param {
|
|
axis: 1
|
|
bias_term:false
|
|
}
|
|
}
|
|
layer {
|
|
name: "ReLU1_2"
|
|
type: "ReLU"
|
|
bottom: "conv1_2"
|
|
top: "conv1_2"
|
|
}
|
|
layer {
|
|
name: "scale1_2"
|
|
bottom: "conv1_2"
|
|
top: "conv1_2"
|
|
type: "Scale"
|
|
scale_param {
|
|
axis: 1
|
|
bias_term:false
|
|
}
|
|
}
|
|
layer {
|
|
name: "eltwise-sum1"
|
|
type: "Eltwise"
|
|
bottom: "conv1_1"
|
|
bottom: "conv1_2"
|
|
top: "conv1_3"
|
|
eltwise_param { operation: SUM }
|
|
}
|
|
layer {
|
|
name: "pool1"
|
|
type: "Pooling"
|
|
bottom: "conv1_3"
|
|
top: "pool1"
|
|
pooling_param {
|
|
pool: MAX
|
|
kernel_size: 3
|
|
stride: 2
|
|
}
|
|
}
|
|
|
|
layer {
|
|
name: "conv2"
|
|
type: "Convolution"
|
|
bottom: "pool1"
|
|
top: "conv2"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 48
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "xavier"
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu2_1"
|
|
type: "ReLU"
|
|
bottom: "conv2"
|
|
top: "conv2_1"
|
|
propagate_down: true
|
|
}
|
|
|
|
layer {
|
|
name: "scale2_1"
|
|
bottom: "conv2"
|
|
top: "conv2_2"
|
|
type: "Scale"
|
|
scale_param {
|
|
axis: 1
|
|
bias_term:false
|
|
}
|
|
}
|
|
layer {
|
|
name: "ReLU2_2"
|
|
type: "ReLU"
|
|
bottom: "conv2_2"
|
|
top: "conv2_2"
|
|
}
|
|
layer {
|
|
name: "scale2_2"
|
|
bottom: "conv2_2"
|
|
top: "conv2_2"
|
|
type: "Scale"
|
|
scale_param {
|
|
axis: 1
|
|
bias_term:false
|
|
}
|
|
}
|
|
layer {
|
|
name: "eltwise-sum2"
|
|
type: "Eltwise"
|
|
bottom: "conv2_1"
|
|
bottom: "conv2_2"
|
|
top: "conv2_3"
|
|
eltwise_param { operation: SUM }
|
|
}
|
|
|
|
layer {
|
|
name: "pool2"
|
|
type: "Pooling"
|
|
bottom: "conv2_3"
|
|
top: "pool2"
|
|
pooling_param {
|
|
pool: MAX
|
|
kernel_size: 3
|
|
stride: 2
|
|
}
|
|
}
|
|
####################################
|
|
|
|
##################################
|
|
layer {
|
|
name: "conv3"
|
|
type: "Convolution"
|
|
bottom: "pool2"
|
|
top: "conv3"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
kernel_size: 2
|
|
stride: 1
|
|
weight_filler {
|
|
type: "xavier"
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
|
|
layer {
|
|
name: "scale3_1"
|
|
bottom: "conv3"
|
|
top: "conv3_2"
|
|
type: "Scale"
|
|
scale_param {
|
|
axis: 1
|
|
bias_term:false
|
|
}
|
|
}
|
|
layer {
|
|
name: "ReLU3_2"
|
|
type: "ReLU"
|
|
bottom: "conv3_2"
|
|
top: "conv3_2"
|
|
}
|
|
layer {
|
|
name: "scale3_2"
|
|
bottom: "conv3_2"
|
|
top: "conv3_2"
|
|
type: "Scale"
|
|
scale_param {
|
|
axis: 1
|
|
bias_term:false
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu3"
|
|
type: "ReLU"
|
|
bottom: "conv3"
|
|
top: "conv3_1"
|
|
propagate_down: true
|
|
}
|
|
layer {
|
|
name: "eltwise-sum3"
|
|
type: "Eltwise"
|
|
bottom: "conv3_1"
|
|
bottom: "conv3_2"
|
|
top: "conv3_3"
|
|
eltwise_param { operation: SUM }
|
|
}
|
|
|
|
###############################
|
|
|
|
###############################
|
|
|
|
layer {
|
|
name: "conv4"
|
|
type: "InnerProduct"
|
|
bottom: "conv3_3"
|
|
top: "conv4"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 128
|
|
weight_filler {
|
|
type: "xavier"
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "relu4_1"
|
|
type: "ReLU"
|
|
bottom: "conv4"
|
|
top: "conv4_1"
|
|
}
|
|
|
|
layer {
|
|
name: "scale4_1"
|
|
bottom: "conv4"
|
|
top: "conv4_2"
|
|
type: "Scale"
|
|
scale_param {
|
|
axis: 1
|
|
bias_term:false
|
|
}
|
|
}
|
|
layer {
|
|
name: "ReLU4_2"
|
|
type: "ReLU"
|
|
bottom: "conv4_2"
|
|
top: "conv4_2"
|
|
}
|
|
layer {
|
|
name: "scale4_2"
|
|
bottom: "conv4_2"
|
|
top: "conv4_2"
|
|
type: "Scale"
|
|
scale_param {
|
|
axis: 1
|
|
bias_term:false
|
|
}
|
|
}
|
|
layer {
|
|
name: "eltwise-sum4"
|
|
type: "Eltwise"
|
|
bottom: "conv4_1"
|
|
bottom: "conv4_2"
|
|
top: "conv4_3"
|
|
eltwise_param { operation: SUM }
|
|
}
|
|
|
|
|
|
layer {
|
|
name: "conv5-1"
|
|
type: "InnerProduct"
|
|
bottom: "conv4_3"
|
|
top: "conv5-1"
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
param {
|
|
lr_mult: 0
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 2
|
|
#kernel_size: 1
|
|
#stride: 1
|
|
weight_filler {
|
|
type: "xavier"
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "conv5-2"
|
|
type: "InnerProduct"
|
|
bottom: "conv4_3"
|
|
top: "conv5-2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 1
|
|
}
|
|
inner_product_param {
|
|
num_output: 4
|
|
#kernel_size: 1
|
|
#stride: 1
|
|
weight_filler {
|
|
type: "xavier"
|
|
}
|
|
bias_filler {
|
|
type: "constant"
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "prob1"
|
|
type: "Softmax"
|
|
bottom: "conv5-1"
|
|
top: "prob1"
|
|
} |