138 lines
5.7 KiB
Python
138 lines
5.7 KiB
Python
|
"""plugins.py
|
||
|
|
||
|
I referenced the code from https://github.com/dongfangduoshou123/YoloV3-TensorRT/blob/master/seralizeEngineFromPythonAPI.py
|
||
|
"""
|
||
|
|
||
|
|
||
|
import ctypes
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorrt as trt
|
||
|
|
||
|
from yolo_to_onnx import (is_pan_arch, DarkNetParser, get_category_num,
|
||
|
get_h_and_w, get_output_convs, get_anchors)
|
||
|
|
||
|
|
||
|
try:
|
||
|
ctypes.cdll.LoadLibrary('../plugins/libyolo_layer.so')
|
||
|
except OSError as e:
|
||
|
raise SystemExit('ERROR: failed to load ../plugins/libyolo_layer.so. '
|
||
|
'Did you forget to do a "make" in the "../plugins/" '
|
||
|
'subdirectory?') from e
|
||
|
|
||
|
|
||
|
def get_scales(cfg_file_path):
|
||
|
"""Get scale_x_y's of all yolo layers from the cfg file."""
|
||
|
with open(cfg_file_path, 'r') as f:
|
||
|
cfg_lines = f.readlines()
|
||
|
yolo_lines = [l.strip() for l in cfg_lines if l.startswith('[yolo]')]
|
||
|
scale_lines = [l.strip() for l in cfg_lines if l.startswith('scale_x_y')]
|
||
|
if len(scale_lines) == 0:
|
||
|
return [1.0] * len(yolo_lines)
|
||
|
else:
|
||
|
assert len(scale_lines) == len(yolo_lines)
|
||
|
return [float(l.split('=')[-1]) for l in scale_lines]
|
||
|
|
||
|
|
||
|
def get_new_coords(cfg_file_path):
|
||
|
"""Get new_coords flag of yolo layers from the cfg file."""
|
||
|
with open(cfg_file_path, 'r') as f:
|
||
|
cfg_lines = f.readlines()
|
||
|
yolo_lines = [l.strip() for l in cfg_lines if l.startswith('[yolo]')]
|
||
|
newc_lines = [l.strip() for l in cfg_lines if l.startswith('new_coords')]
|
||
|
if len(newc_lines) == 0:
|
||
|
return 0
|
||
|
else:
|
||
|
assert len(newc_lines) == len(yolo_lines)
|
||
|
return int(newc_lines[-1].split('=')[-1])
|
||
|
|
||
|
|
||
|
def get_plugin_creator(plugin_name, logger):
|
||
|
"""Get the TensorRT plugin creator."""
|
||
|
trt.init_libnvinfer_plugins(logger, '')
|
||
|
plugin_creator_list = trt.get_plugin_registry().plugin_creator_list
|
||
|
for c in plugin_creator_list:
|
||
|
if c.name == plugin_name:
|
||
|
return c
|
||
|
return None
|
||
|
|
||
|
|
||
|
def add_yolo_plugins(network, model_name, logger):
|
||
|
"""Add yolo plugins into a TensorRT network."""
|
||
|
cfg_file_path = model_name + '.cfg'
|
||
|
parser = DarkNetParser()
|
||
|
layer_configs = parser.parse_cfg_file(cfg_file_path)
|
||
|
num_classes = get_category_num(cfg_file_path)
|
||
|
output_tensor_names = get_output_convs(layer_configs)
|
||
|
h, w = get_h_and_w(layer_configs)
|
||
|
if len(output_tensor_names) == 2:
|
||
|
yolo_whs = [
|
||
|
[w // 32, h // 32], [w // 16, h // 16]]
|
||
|
elif len(output_tensor_names) == 3:
|
||
|
yolo_whs = [
|
||
|
[w // 32, h // 32], [w // 16, h // 16],
|
||
|
[w // 8, h // 8]]
|
||
|
elif len(output_tensor_names) == 4:
|
||
|
yolo_whs = [
|
||
|
[w // 64, h // 64], [w // 32, h // 32],
|
||
|
[w // 16, h // 16], [w // 8, h // 8]]
|
||
|
else:
|
||
|
raise TypeError('bad number of outputs: %d' % len(output_tensor_names))
|
||
|
if is_pan_arch(cfg_file_path):
|
||
|
yolo_whs.reverse()
|
||
|
anchors = get_anchors(cfg_file_path)
|
||
|
if len(anchors) != len(yolo_whs):
|
||
|
raise ValueError('bad number of yolo layers: %d vs. %d' %
|
||
|
(len(anchors), len(yolo_whs)))
|
||
|
if network.num_outputs != len(anchors):
|
||
|
raise ValueError('bad number of network outputs: %d vs. %d' %
|
||
|
(network.num_outputs, len(anchors)))
|
||
|
scales = get_scales(cfg_file_path)
|
||
|
if any([s < 1.0 for s in scales]):
|
||
|
raise ValueError('bad scale_x_y: %s' % str(scales))
|
||
|
if len(scales) != len(anchors):
|
||
|
raise ValueError('bad number of scales: %d vs. %d' %
|
||
|
(len(scales), len(anchors)))
|
||
|
new_coords = get_new_coords(cfg_file_path)
|
||
|
|
||
|
plugin_creator = get_plugin_creator('YoloLayer_TRT', logger)
|
||
|
if not plugin_creator:
|
||
|
raise RuntimeError('cannot get YoloLayer_TRT plugin creator')
|
||
|
old_tensors = [network.get_output(i) for i in range(network.num_outputs)]
|
||
|
new_tensors = [None] * network.num_outputs
|
||
|
for i, old_tensor in enumerate(old_tensors):
|
||
|
input_multiplier = w // yolo_whs[i][0]
|
||
|
new_tensors[i] = network.add_plugin_v2(
|
||
|
[old_tensor],
|
||
|
plugin_creator.create_plugin('YoloLayer_TRT', trt.PluginFieldCollection([
|
||
|
trt.PluginField("yoloWidth", np.array(yolo_whs[i][0], dtype=np.int32), trt.PluginFieldType.INT32),
|
||
|
trt.PluginField("yoloHeight", np.array(yolo_whs[i][1], dtype=np.int32), trt.PluginFieldType.INT32),
|
||
|
trt.PluginField("inputMultiplier", np.array(input_multiplier, dtype=np.int32), trt.PluginFieldType.INT32),
|
||
|
trt.PluginField("newCoords", np.array(new_coords, dtype=np.int32), trt.PluginFieldType.INT32),
|
||
|
trt.PluginField("numClasses", np.array(num_classes, dtype=np.int32), trt.PluginFieldType.INT32),
|
||
|
trt.PluginField("numAnchors", np.array(len(anchors[i]) // 2, dtype=np.int32), trt.PluginFieldType.INT32),
|
||
|
trt.PluginField("anchors", np.ascontiguousarray(anchors[i], dtype=np.float32), trt.PluginFieldType.FLOAT32),
|
||
|
trt.PluginField("scaleXY", np.array(scales[i], dtype=np.float32), trt.PluginFieldType.FLOAT32),
|
||
|
]))
|
||
|
).get_output(0)
|
||
|
|
||
|
for new_tensor in new_tensors:
|
||
|
network.mark_output(new_tensor)
|
||
|
for old_tensor in old_tensors:
|
||
|
network.unmark_output(old_tensor)
|
||
|
|
||
|
return network
|
||
|
|
||
|
|
||
|
def add_concat(network, model_name, logger):
|
||
|
"""Add a final concatenation output into a TensorRT network."""
|
||
|
if network.num_outputs < 2 or network.num_outputs > 4:
|
||
|
raise TypeError('bad number of yolo layers: %d' % network.num_outputs)
|
||
|
yolo_tensors = [network.get_output(i) for i in range(network.num_outputs)]
|
||
|
concat_tensor = network.add_concatenation(yolo_tensors).get_output(0)
|
||
|
for yolo_tensor in yolo_tensors:
|
||
|
network.unmark_output(yolo_tensor)
|
||
|
concat_tensor.name = 'detections'
|
||
|
network.mark_output(concat_tensor)
|
||
|
return network
|