117 lines
3.9 KiB
Python
117 lines
3.9 KiB
Python
|
"""eval_yolo.py
|
||
|
|
||
|
This script is for evaluating mAP (accuracy) of YOLO models.
|
||
|
"""
|
||
|
|
||
|
|
||
|
import os
|
||
|
import sys
|
||
|
import json
|
||
|
import argparse
|
||
|
|
||
|
import cv2
|
||
|
import pycuda.autoinit # This is needed for initializing CUDA driver
|
||
|
|
||
|
from pycocotools.coco import COCO
|
||
|
from pycocotools.cocoeval import COCOeval
|
||
|
from progressbar import progressbar
|
||
|
|
||
|
from utils.yolo_with_plugins import TrtYOLO
|
||
|
from utils.yolo_classes import yolo_cls_to_ssd
|
||
|
|
||
|
|
||
|
|
||
|
HOME = os.environ['HOME']
|
||
|
VAL_IMGS_DIR = HOME + '/data/coco/images/val2017'
|
||
|
VAL_ANNOTATIONS = HOME + '/data/coco/annotations/instances_val2017.json'
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
"""Parse input arguments."""
|
||
|
desc = 'Evaluate mAP of YOLO model'
|
||
|
parser = argparse.ArgumentParser(description=desc)
|
||
|
parser.add_argument(
|
||
|
'--imgs_dir', type=str, default=VAL_IMGS_DIR,
|
||
|
help='directory of validation images [%s]' % VAL_IMGS_DIR)
|
||
|
parser.add_argument(
|
||
|
'--annotations', type=str, default=VAL_ANNOTATIONS,
|
||
|
help='groundtruth annotations [%s]' % VAL_ANNOTATIONS)
|
||
|
parser.add_argument(
|
||
|
'--non_coco', action='store_true',
|
||
|
help='don\'t do coco class translation [False]')
|
||
|
parser.add_argument(
|
||
|
'-c', '--category_num', type=int, default=80,
|
||
|
help='number of object categories [80]')
|
||
|
parser.add_argument(
|
||
|
'-m', '--model', type=str, required=True,
|
||
|
help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-'
|
||
|
'[{dimension}], where dimension could be a single '
|
||
|
'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)'))
|
||
|
parser.add_argument(
|
||
|
'-l', '--letter_box', action='store_true',
|
||
|
help='inference with letterboxed image [False]')
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def check_args(args):
|
||
|
"""Check and make sure command-line arguments are valid."""
|
||
|
if not os.path.isdir(args.imgs_dir):
|
||
|
sys.exit('%s is not a valid directory' % args.imgs_dir)
|
||
|
if not os.path.isfile(args.annotations):
|
||
|
sys.exit('%s is not a valid file' % args.annotations)
|
||
|
|
||
|
|
||
|
def generate_results(trt_yolo, imgs_dir, jpgs, results_file, non_coco):
|
||
|
"""Run detection on each jpg and write results to file."""
|
||
|
results = []
|
||
|
for jpg in progressbar(jpgs):
|
||
|
img = cv2.imread(os.path.join(imgs_dir, jpg))
|
||
|
image_id = int(jpg.split('.')[0].split('_')[-1])
|
||
|
boxes, confs, clss = trt_yolo.detect(img, conf_th=1e-2)
|
||
|
for box, conf, cls in zip(boxes, confs, clss):
|
||
|
x = float(box[0])
|
||
|
y = float(box[1])
|
||
|
w = float(box[2] - box[0] + 1)
|
||
|
h = float(box[3] - box[1] + 1)
|
||
|
cls = int(cls)
|
||
|
cls = cls if non_coco else yolo_cls_to_ssd[cls]
|
||
|
results.append({'image_id': image_id,
|
||
|
'category_id': cls,
|
||
|
'bbox': [x, y, w, h],
|
||
|
'score': float(conf)})
|
||
|
with open(results_file, 'w') as f:
|
||
|
f.write(json.dumps(results, indent=4))
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
check_args(args)
|
||
|
if args.category_num <= 0:
|
||
|
raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num)
|
||
|
if not os.path.isfile('yolo/%s.trt' % args.model):
|
||
|
raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model)
|
||
|
|
||
|
results_file = 'yolo/results_%s.json' % args.model
|
||
|
|
||
|
trt_yolo = TrtYOLO(args.model, args.category_num, args.letter_box)
|
||
|
|
||
|
jpgs = [j for j in os.listdir(args.imgs_dir) if j.endswith('.jpg')]
|
||
|
generate_results(trt_yolo, args.imgs_dir, jpgs, results_file,
|
||
|
non_coco=args.non_coco)
|
||
|
|
||
|
# Run COCO mAP evaluation
|
||
|
# Reference: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||
|
cocoGt = COCO(args.annotations)
|
||
|
cocoDt = cocoGt.loadRes(results_file)
|
||
|
imgIds = sorted(cocoGt.getImgIds())
|
||
|
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
||
|
cocoEval.params.imgIds = imgIds
|
||
|
cocoEval.evaluate()
|
||
|
cocoEval.accumulate()
|
||
|
cocoEval.summarize()
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|