TensorRT-Demo/modnet/torch2onnx/mobilenetv2.py

205 lines
6.6 KiB
Python
Raw Permalink Normal View History

2023-03-06 20:44:29 +08:00
"""mobilenetv2.py
This is a copy of:
https://github.com/ZHKKKe/MODNet/blob/master/src/models/backbones/mobilenetv2.py
"""
import math
import json
from functools import reduce
import torch
from torch import nn
#------------------------------------------------------------------------------
# Useful functions
#------------------------------------------------------------------------------
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def conv_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
#------------------------------------------------------------------------------
# Class of Inverted Residual block
#------------------------------------------------------------------------------
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expansion, dilation=1):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = round(inp * expansion)
self.use_res_connect = self.stride == 1 and inp == oup
if expansion == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
#------------------------------------------------------------------------------
# Class of MobileNetV2
#------------------------------------------------------------------------------
class MobileNetV2(nn.Module):
def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000):
super(MobileNetV2, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
input_channel = 32
last_channel = 1280
interverted_residual_setting = [
# t, c, n, s
[1 , 16, 1, 1],
[expansion, 24, 2, 2],
[expansion, 32, 3, 2],
[expansion, 64, 4, 2],
[expansion, 96, 3, 1],
[expansion, 160, 3, 2],
[expansion, 320, 1, 1],
]
# building first layer
input_channel = _make_divisible(input_channel*alpha, 8)
self.last_channel = _make_divisible(last_channel*alpha, 8) if alpha > 1.0 else last_channel
self.features = [conv_bn(self.in_channels, input_channel, 2)]
# building inverted residual blocks
for t, c, n, s in interverted_residual_setting:
output_channel = _make_divisible(int(c*alpha), 8)
for i in range(n):
if i == 0:
self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t))
else:
self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t))
input_channel = output_channel
# building last several layers
self.features.append(conv_1x1_bn(input_channel, self.last_channel))
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
# building classifier
if self.num_classes is not None:
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, num_classes),
)
# Initialize weights
self._init_weights()
def forward(self, x):
# Stage1
x = self.features[0](x)
x = self.features[1](x)
# Stage2
x = self.features[2](x)
x = self.features[3](x)
# Stage3
x = self.features[4](x)
x = self.features[5](x)
x = self.features[6](x)
# Stage4
x = self.features[7](x)
x = self.features[8](x)
x = self.features[9](x)
x = self.features[10](x)
x = self.features[11](x)
x = self.features[12](x)
x = self.features[13](x)
# Stage5
x = self.features[14](x)
x = self.features[15](x)
x = self.features[16](x)
x = self.features[17](x)
x = self.features[18](x)
# Classification
if self.num_classes is not None:
x = x.mean(dim=(2,3))
x = self.classifier(x)
# Output
return x
def _load_pretrained_model(self, pretrained_file):
pretrain_dict = torch.load(pretrained_file, map_location='cpu')
model_dict = {}
state_dict = self.state_dict()
print("[MobileNetV2] Loading pretrained model...")
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
else:
print(k, "is ignored")
state_dict.update(model_dict)
self.load_state_dict(state_dict)
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()