TensorRT-Demo/modnet/torch2onnx/backbone.py

88 lines
2.6 KiB
Python
Raw Permalink Normal View History

2023-03-06 20:44:29 +08:00
"""backbone.py
This is a copy of:
https://github.com/ZHKKKe/MODNet/blob/master/src/models/backbones/wrapper.py
"""
import os
from functools import reduce
import torch
import torch.nn as nn
from .mobilenetv2 import MobileNetV2
class BaseBackbone(nn.Module):
"""Superclass of Replaceable Backbone Model for Semantic Estimation"""
def __init__(self, in_channels):
super(BaseBackbone, self).__init__()
self.in_channels = in_channels
self.model = None
self.enc_channels = []
def forward(self, x):
raise NotImplementedError
def load_pretrained_ckpt(self):
raise NotImplementedError
class MobileNetV2Backbone(BaseBackbone):
"""MobileNetV2 Backbone"""
def __init__(self, in_channels):
super(MobileNetV2Backbone, self).__init__(in_channels)
self.model = MobileNetV2(self.in_channels, alpha=1.0, expansion=6, num_classes=None)
self.enc_channels = [16, 24, 32, 96, 1280]
def forward(self, x):
# x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
x = self.model.features[0](x)
x = self.model.features[1](x)
enc2x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
x = self.model.features[2](x)
x = self.model.features[3](x)
enc4x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
x = self.model.features[4](x)
x = self.model.features[5](x)
x = self.model.features[6](x)
enc8x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
x = self.model.features[7](x)
x = self.model.features[8](x)
x = self.model.features[9](x)
x = self.model.features[10](x)
x = self.model.features[11](x)
x = self.model.features[12](x)
x = self.model.features[13](x)
enc16x = x
# x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
x = self.model.features[14](x)
x = self.model.features[15](x)
x = self.model.features[16](x)
x = self.model.features[17](x)
x = self.model.features[18](x)
enc32x = x
return [enc2x, enc4x, enc8x, enc16x, enc32x]
def load_pretrained_ckpt(self):
# the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
if not os.path.exists(ckpt_path):
print('cannot find the pretrained mobilenetv2 backbone')
exit()
ckpt = torch.load(ckpt_path)
self.model.load_state_dict(ckpt)