346 lines
15 KiB
Python
346 lines
15 KiB
Python
from __future__ import division
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
from torch.autograd import Variable
|
||
import numpy as np
|
||
|
||
from utils.parse_config import *
|
||
from utils.utils import build_targets, to_cpu, non_max_suppression
|
||
|
||
import matplotlib.pyplot as plt
|
||
import matplotlib.patches as patches
|
||
|
||
|
||
def create_modules(module_defs):
|
||
"""
|
||
Constructs module list of layer blocks from module configuration in module_defs
|
||
"""
|
||
hyperparams = module_defs.pop(0)
|
||
output_filters = [int(hyperparams["channels"])]
|
||
module_list = nn.ModuleList()
|
||
for module_i, module_def in enumerate(module_defs):
|
||
modules = nn.Sequential()
|
||
# 3合1层
|
||
if module_def["type"] == "convolutional":
|
||
bn = int(module_def["batch_normalize"])
|
||
filters = int(module_def["filters"])
|
||
kernel_size = int(module_def["size"])
|
||
pad = (kernel_size - 1) // 2
|
||
modules.add_module(
|
||
f"conv_{module_i}",
|
||
nn.Conv2d(
|
||
in_channels=output_filters[-1],
|
||
out_channels=filters,
|
||
kernel_size=kernel_size,
|
||
stride=int(module_def["stride"]),
|
||
padding=pad,
|
||
bias=not bn,
|
||
),
|
||
)
|
||
if bn:
|
||
modules.add_module(f"batch_norm_{module_i}", nn.BatchNorm2d(filters, momentum=0.9, eps=1e-5))
|
||
if module_def["activation"] == "leaky":
|
||
modules.add_module(f"leaky_{module_i}", nn.LeakyReLU(0.1))
|
||
|
||
elif module_def["type"] == "maxpool":
|
||
kernel_size = int(module_def["size"])
|
||
stride = int(module_def["stride"])
|
||
if kernel_size == 2 and stride == 1:
|
||
modules.add_module(f"_debug_padding_{module_i}", nn.ZeroPad2d((0, 1, 0, 1)))
|
||
maxpool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2))
|
||
modules.add_module(f"maxpool_{module_i}", maxpool)
|
||
|
||
elif module_def["type"] == "resize":
|
||
resize = Resize(scale_factor=int(module_def["stride"]), mode="nearest")
|
||
modules.add_module(f"resize_{module_i}", resize)
|
||
|
||
elif module_def["type"] == "route": # 输入1:26*26*256 输入2:26*26*128 输出:26*26*(256+128)
|
||
layers = [int(x) for x in module_def["layers"].split(",")]
|
||
filters = sum([output_filters[1:][i] for i in layers])
|
||
modules.add_module(f"route_{module_i}", EmptyLayer())
|
||
|
||
elif module_def["type"] == "shortcut":
|
||
filters = output_filters[1:][int(module_def["from"])]
|
||
modules.add_module(f"shortcut_{module_i}", EmptyLayer())
|
||
|
||
elif module_def["type"] == "yolo":
|
||
anchor_idxs = [int(x) for x in module_def["mask"].split(",")]
|
||
# Extract anchors
|
||
anchors = [int(x) for x in module_def["anchors"].split(",")]
|
||
anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
|
||
anchors = [anchors[i] for i in anchor_idxs]
|
||
num_classes = int(module_def["classes"])
|
||
img_size = int(hyperparams["height"])
|
||
# Define detection layer
|
||
yolo_layer = YOLOLayer(anchors, num_classes, img_size)
|
||
modules.add_module(f"yolo_{module_i}", yolo_layer)
|
||
# Register module list and number of output filters
|
||
module_list.append(modules)
|
||
output_filters.append(filters)
|
||
|
||
return hyperparams, module_list
|
||
|
||
|
||
class Resize(nn.Module):
|
||
""" nn.Upsample is deprecated """
|
||
|
||
def __init__(self, scale_factor, mode="nearest"):
|
||
super(Resize, self).__init__()
|
||
self.scale_factor = scale_factor
|
||
self.mode = mode
|
||
|
||
def forward(self, x):
|
||
x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
|
||
return x
|
||
|
||
|
||
class EmptyLayer(nn.Module):
|
||
"""Placeholder for 'route' and 'shortcut' layers"""
|
||
|
||
def __init__(self):
|
||
super(EmptyLayer, self).__init__()
|
||
|
||
|
||
class YOLOLayer(nn.Module):
|
||
"""Detection layer"""
|
||
|
||
def __init__(self, anchors, num_classes, img_dim=416):
|
||
super(YOLOLayer, self).__init__()
|
||
self.anchors = anchors
|
||
self.num_anchors = len(anchors)
|
||
self.num_classes = num_classes
|
||
self.ignore_thres = 0.5
|
||
self.mse_loss = nn.MSELoss()
|
||
self.bce_loss = nn.BCELoss()
|
||
self.obj_scale = 1
|
||
self.noobj_scale = 100
|
||
self.metrics = {}
|
||
self.img_dim = img_dim
|
||
self.grid_size = 0 # grid size
|
||
|
||
def compute_grid_offsets(self, grid_size, cuda=True):
|
||
self.grid_size = grid_size
|
||
g = self.grid_size
|
||
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
|
||
self.stride = self.img_dim / self.grid_size
|
||
# Calculate offsets for each grid
|
||
self.grid_x = torch.arange(g).repeat(g, 1).view([1, 1, g, g]).type(FloatTensor)
|
||
self.grid_y = torch.arange(g).repeat(g, 1).t().view([1, 1, g, g]).type(FloatTensor)
|
||
self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors])
|
||
self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.num_anchors, 1, 1))
|
||
self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.num_anchors, 1, 1))
|
||
|
||
def forward(self, x, targets=None, img_dim=None):
|
||
# Tensors for cuda support
|
||
print (x.shape)
|
||
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
|
||
LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
|
||
ByteTensor = torch.cuda.ByteTensor if x.is_cuda else torch.ByteTensor
|
||
|
||
self.img_dim = img_dim
|
||
num_samples = x.size(0)
|
||
grid_size = x.size(2)
|
||
|
||
prediction = (
|
||
x.view(num_samples, self.num_anchors, self.num_classes + 5, grid_size, grid_size)
|
||
.permute(0, 1, 3, 4, 2)
|
||
.contiguous()
|
||
)
|
||
print (prediction.shape)
|
||
# Get outputs
|
||
x = torch.sigmoid(prediction[..., 0]) # Center x
|
||
y = torch.sigmoid(prediction[..., 1]) # Center y
|
||
w = prediction[..., 2] # Width
|
||
h = prediction[..., 3] # Height
|
||
pred_conf = torch.sigmoid(prediction[..., 4]) # Conf
|
||
pred_cls = torch.sigmoid(prediction[..., 5:]) # Cls pred.
|
||
|
||
# If grid size does not match current we compute new offsets
|
||
if grid_size != self.grid_size:
|
||
self.compute_grid_offsets(grid_size, cuda=x.is_cuda) #相对位置得到对应的绝对位置比如之前的位置是0.5,0.5变为 11.5,11.5这样的
|
||
|
||
# Add offset and scale with anchors #特征图中的实际位置
|
||
pred_boxes = FloatTensor(prediction[..., :4].shape)
|
||
pred_boxes[..., 0] = x.data + self.grid_x
|
||
pred_boxes[..., 1] = y.data + self.grid_y
|
||
pred_boxes[..., 2] = torch.exp(w.data) * self.anchor_w
|
||
pred_boxes[..., 3] = torch.exp(h.data) * self.anchor_h
|
||
|
||
output = torch.cat(
|
||
(
|
||
pred_boxes.view(num_samples, -1, 4) * self.stride, #还原到原始图中
|
||
pred_conf.view(num_samples, -1, 1),
|
||
pred_cls.view(num_samples, -1, self.num_classes),
|
||
),
|
||
-1,
|
||
)
|
||
|
||
if targets is None:
|
||
return output, 0
|
||
else:
|
||
iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf = build_targets(
|
||
pred_boxes=pred_boxes,
|
||
pred_cls=pred_cls,
|
||
target=targets,
|
||
anchors=self.scaled_anchors,
|
||
ignore_thres=self.ignore_thres,
|
||
)
|
||
# iou_scores:真实值与最匹配的anchor的IOU得分值 class_mask:分类正确的索引 obj_mask:目标框所在位置的最好anchor置为1 noobj_mask obj_mask那里置0,还有计算的iou大于阈值的也置0,其他都为1 tx, ty, tw, th, 对应的对于该大小的特征图的xywh目标值也就是我们需要拟合的值 tconf 目标置信度
|
||
# Loss : Mask outputs to ignore non-existing objects (except with conf. loss)
|
||
loss_x = self.mse_loss(x[obj_mask], tx[obj_mask]) # 只计算有目标的
|
||
loss_y = self.mse_loss(y[obj_mask], ty[obj_mask])
|
||
loss_w = self.mse_loss(w[obj_mask], tw[obj_mask])
|
||
loss_h = self.mse_loss(h[obj_mask], th[obj_mask])
|
||
loss_conf_obj = self.bce_loss(pred_conf[obj_mask], tconf[obj_mask])
|
||
loss_conf_noobj = self.bce_loss(pred_conf[noobj_mask], tconf[noobj_mask])
|
||
loss_conf = self.obj_scale * loss_conf_obj + self.noobj_scale * loss_conf_noobj #有物体越接近1越好 没物体的越接近0越好
|
||
loss_cls = self.bce_loss(pred_cls[obj_mask], tcls[obj_mask]) #分类损失
|
||
total_loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls #总损失
|
||
|
||
# Metrics
|
||
cls_acc = 100 * class_mask[obj_mask].mean()
|
||
conf_obj = pred_conf[obj_mask].mean()
|
||
conf_noobj = pred_conf[noobj_mask].mean()
|
||
conf50 = (pred_conf > 0.5).float()
|
||
iou50 = (iou_scores > 0.5).float()
|
||
iou75 = (iou_scores > 0.75).float()
|
||
detected_mask = conf50 * class_mask * tconf
|
||
precision = torch.sum(iou50 * detected_mask) / (conf50.sum() + 1e-16)
|
||
recall50 = torch.sum(iou50 * detected_mask) / (obj_mask.sum() + 1e-16)
|
||
recall75 = torch.sum(iou75 * detected_mask) / (obj_mask.sum() + 1e-16)
|
||
|
||
self.metrics = {
|
||
"loss": to_cpu(total_loss).item(),
|
||
"x": to_cpu(loss_x).item(),
|
||
"y": to_cpu(loss_y).item(),
|
||
"w": to_cpu(loss_w).item(),
|
||
"h": to_cpu(loss_h).item(),
|
||
"conf": to_cpu(loss_conf).item(),
|
||
"cls": to_cpu(loss_cls).item(),
|
||
"cls_acc": to_cpu(cls_acc).item(),
|
||
"recall50": to_cpu(recall50).item(),
|
||
"recall75": to_cpu(recall75).item(),
|
||
"precision": to_cpu(precision).item(),
|
||
"conf_obj": to_cpu(conf_obj).item(),
|
||
"conf_noobj": to_cpu(conf_noobj).item(),
|
||
"grid_size": grid_size,
|
||
}
|
||
|
||
return output, total_loss
|
||
|
||
|
||
class Darknet(nn.Module):
|
||
"""YOLOv3 object detection model"""
|
||
|
||
def __init__(self, config_path, img_size=416):
|
||
super(Darknet, self).__init__()
|
||
self.module_defs = parse_model_config(config_path)
|
||
self.hyperparams, self.module_list = create_modules(self.module_defs)
|
||
self.yolo_layers = [layer[0] for layer in self.module_list if hasattr(layer[0], "metrics")]
|
||
self.img_size = img_size
|
||
self.seen = 0
|
||
self.header_info = np.array([0, 0, 0, self.seen, 0], dtype=np.int32)
|
||
|
||
def forward(self, x, targets=None):
|
||
img_dim = x.shape[2]
|
||
loss = 0
|
||
layer_outputs, yolo_outputs = [], []
|
||
for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
|
||
if module_def["type"] in ["convolutional", "resize", "maxpool"]:
|
||
x = module(x)
|
||
elif module_def["type"] == "route":
|
||
x = torch.cat([layer_outputs[int(layer_i)] for layer_i in module_def["layers"].split(",")], 1)
|
||
elif module_def["type"] == "shortcut":
|
||
layer_i = int(module_def["from"])
|
||
x = layer_outputs[-1] + layer_outputs[layer_i]
|
||
elif module_def["type"] == "yolo":
|
||
x, layer_loss = module[0](x, targets, img_dim)
|
||
loss += layer_loss
|
||
yolo_outputs.append(x)
|
||
layer_outputs.append(x)
|
||
yolo_outputs = to_cpu(torch.cat(yolo_outputs, 1))
|
||
return yolo_outputs if targets is None else (loss, yolo_outputs)
|
||
|
||
def load_darknet_weights(self, weights_path):
|
||
"""Parses and loads the weights stored in 'weights_path'"""
|
||
|
||
# Open the weights file
|
||
with open(weights_path, "rb") as f:
|
||
header = np.fromfile(f, dtype=np.int32, count=5) # First five are header values
|
||
self.header_info = header # Needed to write header when saving weights
|
||
self.seen = header[3] # number of images seen during training
|
||
weights = np.fromfile(f, dtype=np.float32) # The rest are weights
|
||
|
||
# Establish cutoff for loading backbone weights
|
||
cutoff = None
|
||
if "darknet53.conv.74" in weights_path:
|
||
cutoff = 75
|
||
|
||
ptr = 0
|
||
for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
|
||
if i == cutoff:
|
||
break
|
||
if module_def["type"] == "convolutional":
|
||
conv_layer = module[0]
|
||
if module_def["batch_normalize"]:
|
||
# Load BN bias, weights, running mean and running variance
|
||
bn_layer = module[1]
|
||
num_b = bn_layer.bias.numel() # Number of biases
|
||
# Bias
|
||
bn_b = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.bias)
|
||
bn_layer.bias.data.copy_(bn_b)
|
||
ptr += num_b
|
||
# Weight
|
||
bn_w = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.weight)
|
||
bn_layer.weight.data.copy_(bn_w)
|
||
ptr += num_b
|
||
# Running Mean
|
||
bn_rm = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.running_mean)
|
||
bn_layer.running_mean.data.copy_(bn_rm)
|
||
ptr += num_b
|
||
# Running Var
|
||
bn_rv = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.running_var)
|
||
bn_layer.running_var.data.copy_(bn_rv)
|
||
ptr += num_b
|
||
else:
|
||
# Load conv. bias
|
||
num_b = conv_layer.bias.numel()
|
||
conv_b = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(conv_layer.bias)
|
||
conv_layer.bias.data.copy_(conv_b)
|
||
ptr += num_b
|
||
# Load conv. weights
|
||
num_w = conv_layer.weight.numel()
|
||
conv_w = torch.from_numpy(weights[ptr : ptr + num_w]).view_as(conv_layer.weight)
|
||
conv_layer.weight.data.copy_(conv_w)
|
||
ptr += num_w
|
||
|
||
def save_darknet_weights(self, path, cutoff=-1):
|
||
"""
|
||
@:param path - path of the new weights file
|
||
@:param cutoff - save layers between 0 and cutoff (cutoff = -1 -> all are saved)
|
||
"""
|
||
fp = open(path, "wb")
|
||
self.header_info[3] = self.seen
|
||
self.header_info.tofile(fp)
|
||
|
||
# Iterate through layers
|
||
for i, (module_def, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
|
||
if module_def["type"] == "convolutional":
|
||
conv_layer = module[0]
|
||
# If batch norm, load bn first
|
||
if module_def["batch_normalize"]:
|
||
bn_layer = module[1]
|
||
bn_layer.bias.data.cpu().numpy().tofile(fp)
|
||
bn_layer.weight.data.cpu().numpy().tofile(fp)
|
||
bn_layer.running_mean.data.cpu().numpy().tofile(fp)
|
||
bn_layer.running_var.data.cpu().numpy().tofile(fp)
|
||
# Load conv bias
|
||
else:
|
||
conv_layer.bias.data.cpu().numpy().tofile(fp)
|
||
# Load conv weights
|
||
conv_layer.weight.data.cpu().numpy().tofile(fp)
|
||
|
||
fp.close()
|