[net] # Testing batch=1 subdivisions=1 # Training # batch=64 # subdivisions=2 width=416 height=416 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.001 burn_in=1000 max_batches = 500200 policy=steps steps=400000,450000 scales=.1,.1 # 0 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky # 1 [maxpool] size=2 stride=2 # 2 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky # 3 [maxpool] size=2 stride=2 # 4 [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky # 5 [maxpool] size=2 stride=2 # 6 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky # 7 [maxpool] size=2 stride=2 # 8 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 9 [maxpool] size=2 stride=2 # 10 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 11 [maxpool] size=2 stride=1 # 12 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky ########### # 13 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky # 14 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky # 15 [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear # 16 [yolo] mask = 3,4,5 anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 classes=80 num=6 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 # 17 [route] layers = -4 # 18 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky # 19 [upsample] stride=2 # 20 [route] layers = -1, 8 # 21 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky # 22 [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear # 23 [yolo] mask = 1,2,3 anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 classes=80 num=6 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1