PyTorch-YOLOv3/darknet_api.py

191 lines
7.6 KiB
Python
Raw Normal View History

2023-03-04 19:47:42 +08:00
# coding: utf-8
# 2019-12-10
"""
YOlo相关的预处理api
"""
import cv2
import time
import numpy as np
# 加载label names
def get_labels(names_file):
names = list()
with open(names_file, 'r') as f:
lines = f.read()
for name in lines.splitlines():
names.append(name)
f.close()
return names
# 照片预处理
def process_img(img_path, input_shape):
ori_img = cv2.imread(img_path)
img = cv2.resize(ori_img, input_shape)
image = img[:, :, ::-1].transpose((2, 0, 1))
image = image[np.newaxis, :, :, :] / 255
image = np.array(image, dtype=np.float32)
return ori_img, ori_img.shape, image
# 视频预处理
def frame_process(frame, input_shape):
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, input_shape)
# image = cv2.resize(image, (640, 480))
image_mean = np.array([127, 127, 127])
image = (image - image_mean) / 128
image = np.transpose(image, [2, 0, 1])
image = np.expand_dims(image, axis=0)
image = image.astype(np.float32)
return image
# sigmoid函数
def sigmoid(x):
s = 1 / (1 + np.exp(-1 * x))
return s
# 获取预测正确的类别,以及概率和索引;
def get_result(class_scores):
class_score = 0
class_index = 0
for i in range(len(class_scores)):
if class_scores[i] > class_score:
class_index += 1
class_score = class_scores[i]
return class_score, class_index
# 通过置信度筛选得到bboxs
def get_bbox(feat, anchors, image_shape, confidence_threshold=0.25):
box = list()
for i in range(len(anchors)):
for cx in range(feat.shape[0]):
for cy in range(feat.shape[1]):
tx = feat[cx][cy][0 + 85 * i]
ty = feat[cx][cy][1 + 85 * i]
tw = feat[cx][cy][2 + 85 * i]
th = feat[cx][cy][3 + 85 * i]
cf = feat[cx][cy][4 + 85 * i]
cp = feat[cx][cy][5 + 85 * i:85 + 85 * i]
bx = (sigmoid(tx) + cx) / feat.shape[0]
by = (sigmoid(ty) + cy) / feat.shape[1]
bw = anchors[i][0] * np.exp(tw) / image_shape[0]
bh = anchors[i][1] * np.exp(th) / image_shape[1]
b_confidence = sigmoid(cf)
b_class_prob = sigmoid(cp)
b_scores = b_confidence * b_class_prob
b_class_score, b_class_index = get_result(b_scores)
if b_class_score >= confidence_threshold:
box.append([bx, by, bw, bh, b_class_score, b_class_index])
return box
# 采用nms算法筛选获取到的bbox
def nms(boxes, nms_threshold=0.6):
l = len(boxes)
if l == 0:
return []
else:
b_x = boxes[:, 0]
b_y = boxes[:, 1]
b_w = boxes[:, 2]
b_h = boxes[:, 3]
scores = boxes[:, 4]
areas = (b_w + 1) * (b_h + 1)
order = scores.argsort()[::-1]
keep = list()
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(b_x[i], b_x[order[1:]])
yy1 = np.maximum(b_y[i], b_y[order[1:]])
xx2 = np.minimum(b_x[i] + b_w[i], b_x[order[1:]] + b_w[order[1:]])
yy2 = np.minimum(b_y[i] + b_h[i], b_y[order[1:]] + b_h[order[1:]])
# 相交面积,不重叠时面积为0
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
# 相并面积,面积1+面积2-相交面积
union = areas[i] + areas[order[1:]] - inter
# 计算IoU交 /面积1+面积2-交)
IoU = inter / union
# 保留IoU小于阈值的box
inds = np.where(IoU <= nms_threshold)[0]
order = order[inds + 1] # 因为IoU数组的长度比order数组少一个,所以这里要将所有下标后移一位
final_boxes = [boxes[i] for i in keep]
return final_boxes
# 绘制预测框
def draw_box(boxes, img, img_shape):
label = ["background", "person",
"bicycle", "car", "motorbike", "aeroplane",
"bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench",
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant",
"bear", "zebra", "giraffe", "backpack", "umbrella", "handbag",
"tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball",
"kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon",
"bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog",
"pizza", "donut", "cake", "chair", "sofa", "potted plant", "bed", "dining table",
"toilet", "TV monitor", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"]
for box in boxes:
x1 = int((box[0] - box[2] / 2) * img_shape[1])
y1 = int((box[1] - box[3] / 2) * img_shape[0])
x2 = int((box[0] + box[2] / 2) * img_shape[1])
y2 = int((box[1] + box[3] / 2) * img_shape[0])
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(img, label[int(box[5])] + ":" + str(round(box[4], 3)), (x1 + 5, y1 + 10), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 0, 255), 1)
print(label[int(box[5])] + ":" + "概率值:%.3f" % box[4])
cv2.imshow('image', img)
cv2.waitKey(10)
cv2.destroyAllWindows()
2023-03-06 11:41:08 +08:00
def draw_box_save(boxes,img,img_shape,img_path):
label = ["background", "person",
"bicycle", "car", "motorbike", "aeroplane",
"bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "stop sign", "parking meter", "bench",
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant",
"bear", "zebra", "giraffe", "backpack", "umbrella", "handbag",
"tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball",
"kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon",
"bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog",
"pizza", "donut", "cake", "chair", "sofa", "potted plant", "bed", "dining table",
"toilet", "TV monitor", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
"scissors", "teddy bear", "hair drier", "toothbrush"]
for box in boxes:
x1 = int((box[0] - box[2] / 2) * img_shape[1])
y1 = int((box[1] - box[3] / 2) * img_shape[0])
x2 = int((box[0] + box[2] / 2) * img_shape[1])
y2 = int((box[1] + box[3] / 2) * img_shape[0])
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(img, label[int(box[5])] + ":" + str(round(box[4], 3)), (x1 + 5, y1 + 10), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 0, 255), 1)
print(label[int(box[5])] + ":" + "概率值:%.3f" % box[4])
cv2.imwrite(img_path,img)
2023-03-04 19:47:42 +08:00
# 获取预测框
def get_boxes(prediction, anchors, img_shape, confidence_threshold=0.25, nms_threshold=0.6):
boxes = []
for i in range(len(prediction)):
feature_map = prediction[i][0].transpose((2, 1, 0))
box = get_bbox(feature_map, anchors[i], img_shape, confidence_threshold)
boxes.extend(box)
Boxes = nms(np.array(boxes), nms_threshold)
return Boxes