2023-03-04 19:47:42 +08:00
|
|
|
|
# coding: utf-8
|
|
|
|
|
# author: hxy
|
|
|
|
|
# 2019-12-10
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
照片的inference;
|
|
|
|
|
默认推理过程在CPU上;
|
|
|
|
|
"""
|
2023-03-04 18:54:44 +08:00
|
|
|
|
import os
|
|
|
|
|
import time
|
2023-03-04 19:47:42 +08:00
|
|
|
|
import logging
|
2023-03-04 18:54:44 +08:00
|
|
|
|
import onnxruntime
|
2023-03-04 19:47:42 +08:00
|
|
|
|
from darknet_api import process_img, get_boxes, draw_box
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 定义日志格式
|
|
|
|
|
def log_set():
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 加载onnx模型
|
|
|
|
|
def load_model(onnx_model):
|
|
|
|
|
sess = onnxruntime.InferenceSession(onnx_model)
|
|
|
|
|
in_name = [input.name for input in sess.get_inputs()][0]
|
|
|
|
|
out_name = [output.name for output in sess.get_outputs()]
|
|
|
|
|
logging.info("输入的name:{}, 输出的name:{}".format(in_name, out_name))
|
|
|
|
|
|
|
|
|
|
return sess, in_name, out_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
log_set()
|
|
|
|
|
input_shape = (416 , 416)
|
|
|
|
|
|
|
|
|
|
# anchors
|
|
|
|
|
anchors_yolo = [[(116, 90), (156, 198), (373, 326)], [(30, 61), (62, 45), (59, 119)],
|
|
|
|
|
[(10, 13), (16, 30), (33, 23)]]
|
|
|
|
|
anchors_yolo_tiny = [[(81, 82), (135, 169), (344, 319)], [(10, 14), (23, 27), (37, 58)]]
|
|
|
|
|
session, inname, outname = load_model(onnx_model='output/yolov3-416.onnx')
|
|
|
|
|
logging.info("开始Inference....")
|
|
|
|
|
# 照片的批量inference
|
|
|
|
|
img_files_path = 'data/samples'
|
|
|
|
|
imgs = os.listdir(img_files_path)
|
|
|
|
|
|
|
|
|
|
logging.debug(imgs)
|
|
|
|
|
for img_name in imgs:
|
|
|
|
|
img_full_path = os.path.join(img_files_path, img_name)
|
|
|
|
|
logging.debug(img_full_path)
|
|
|
|
|
img, img_shape, testdata = process_img(img_path=img_full_path,
|
|
|
|
|
input_shape=input_shape)
|
|
|
|
|
s = time.time()
|
|
|
|
|
prediction = session.run(outname, {inname: testdata})
|
|
|
|
|
|
|
|
|
|
# logging.info("推理照片 %s 耗时:% .2fms" % (img_name, ((time.time() - s)*1000)))
|
|
|
|
|
boxes = get_boxes(prediction=prediction,
|
|
|
|
|
anchors=anchors_yolo,
|
|
|
|
|
img_shape=input_shape)
|
|
|
|
|
draw_box(boxes=boxes,
|
|
|
|
|
img=img,
|
|
|
|
|
img_shape=img_shape)
|
|
|
|
|
logging.info("推理照片 %s 耗时:% .2fms" % (img_name, ((time.time() - s)*1000)))
|