OpenCV_4.2.0/opencv_contrib-4.2.0/modules/reg/samples/map_test.cpp

424 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp> // OpenCV window I/O
#include <opencv2/imgproc.hpp> // OpenCV image transformations
#ifdef COMPARE_FEATURES
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/calib3d/calib3d_c.h>
using namespace cv::xfeatures2d;
#endif
#include "opencv2/reg/mapaffine.hpp"
#include "opencv2/reg/mapshift.hpp"
#include "opencv2/reg/mapprojec.hpp"
#include "opencv2/reg/mappergradshift.hpp"
#include "opencv2/reg/mappergradeuclid.hpp"
#include "opencv2/reg/mappergradsimilar.hpp"
#include "opencv2/reg/mappergradaffine.hpp"
#include "opencv2/reg/mappergradproj.hpp"
#include "opencv2/reg/mapperpyramid.hpp"
static const char* DIFF_IM = "Image difference";
static const char* DIFF_REGPIX_IM = "Image difference: pixel registered";
using namespace cv;
using namespace cv::reg;
using namespace std;
static void showDifference(const Mat& image1, const Mat& image2, const char* title)
{
Mat img1, img2;
image1.convertTo(img1, CV_32FC3);
image2.convertTo(img2, CV_32FC3);
if(img1.channels() != 1)
cvtColor(img1, img1, COLOR_BGR2GRAY);
if(img2.channels() != 1)
cvtColor(img2, img2, COLOR_BGR2GRAY);
Mat imgDiff;
img1.copyTo(imgDiff);
imgDiff -= img2;
imgDiff /= 2.f;
imgDiff += 128.f;
Mat imgSh;
imgDiff.convertTo(imgSh, CV_8UC3);
imshow(title, imgSh);
}
static void testShift(const Mat& img1)
{
Mat img2;
// Warp original image
Vec<double, 2> shift(5., 5.);
MapShift mapTest(shift);
mapTest.warp(img1, img2);
showDifference(img1, img2, DIFF_IM);
// Register
Ptr<MapperGradShift> mapper = makePtr<MapperGradShift>();
MapperPyramid mappPyr(mapper);
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
// Print result
MapShift* mapShift = dynamic_cast<MapShift*>(mapPtr.get());
cout << endl << "--- Testing shift mapper ---" << endl;
cout << Mat(shift) << endl;
cout << Mat(mapShift->getShift()) << endl;
// Display registration accuracy
Mat dest;
mapShift->inverseWarp(img2, dest);
showDifference(img1, dest, DIFF_REGPIX_IM);
waitKey(0);
destroyWindow(DIFF_IM);
destroyWindow(DIFF_REGPIX_IM);
}
static void testEuclidean(const Mat& img1)
{
Mat img2;
// Warp original image
double theta = 3*CV_PI/180;
double cosT = cos(theta);
double sinT = sin(theta);
Matx<double, 2, 2> linTr(cosT, -sinT, sinT, cosT);
Vec<double, 2> shift(5., 5.);
MapAffine mapTest(linTr, shift);
mapTest.warp(img1, img2);
showDifference(img1, img2, DIFF_IM);
// Register
Ptr<MapperGradEuclid> mapper = makePtr<MapperGradEuclid>();
MapperPyramid mappPyr(mapper);
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
// Print result
MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
cout << endl << "--- Testing Euclidean mapper ---" << endl;
cout << Mat(linTr) << endl;
cout << Mat(shift) << endl;
cout << Mat(mapAff->getLinTr()) << endl;
cout << Mat(mapAff->getShift()) << endl;
// Display registration accuracy
Mat dest;
mapAff->inverseWarp(img2, dest);
showDifference(img1, dest, DIFF_REGPIX_IM);
waitKey(0);
destroyWindow(DIFF_IM);
destroyWindow(DIFF_REGPIX_IM);
}
static void testSimilarity(const Mat& img1)
{
Mat img2;
// Warp original image
double theta = 3*CV_PI/180;
double scale = 0.95;
double a = scale*cos(theta);
double b = scale*sin(theta);
Matx<double, 2, 2> linTr(a, -b, b, a);
Vec<double, 2> shift(5., 5.);
MapAffine mapTest(linTr, shift);
mapTest.warp(img1, img2);
showDifference(img1, img2, DIFF_IM);
// Register
Ptr<MapperGradSimilar> mapper = makePtr<MapperGradSimilar>();
MapperPyramid mappPyr(mapper);
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
// Print result
MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
cout << endl << "--- Testing similarity mapper ---" << endl;
cout << Mat(linTr) << endl;
cout << Mat(shift) << endl;
cout << Mat(mapAff->getLinTr()) << endl;
cout << Mat(mapAff->getShift()) << endl;
// Display registration accuracy
Mat dest;
mapAff->inverseWarp(img2, dest);
showDifference(img1, dest, DIFF_REGPIX_IM);
waitKey(0);
destroyWindow(DIFF_IM);
destroyWindow(DIFF_REGPIX_IM);
}
static void testAffine(const Mat& img1)
{
Mat img2;
// Warp original image
Matx<double, 2, 2> linTr(1., 0.1, -0.01, 1.);
Vec<double, 2> shift(1., 1.);
MapAffine mapTest(linTr, shift);
mapTest.warp(img1, img2);
showDifference(img1, img2, DIFF_IM);
// Register
Ptr<MapperGradAffine> mapper = makePtr<MapperGradAffine>();
MapperPyramid mappPyr(mapper);
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
// Print result
MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
cout << endl << "--- Testing affine mapper ---" << endl;
cout << Mat(linTr) << endl;
cout << Mat(shift) << endl;
cout << Mat(mapAff->getLinTr()) << endl;
cout << Mat(mapAff->getShift()) << endl;
// Display registration accuracy
Mat dest;
mapAff->inverseWarp(img2, dest);
showDifference(img1, dest, DIFF_REGPIX_IM);
waitKey(0);
destroyWindow(DIFF_IM);
destroyWindow(DIFF_REGPIX_IM);
}
static void testProjective(const Mat& img1)
{
Mat img2;
// Warp original image
Matx<double, 3, 3> projTr(1., 0., 0., 0., 1., 0., 0.0001, 0.0001, 1);
MapProjec mapTest(projTr);
mapTest.warp(img1, img2);
showDifference(img1, img2, DIFF_IM);
// Register
Ptr<MapperGradProj> mapper = makePtr<MapperGradProj>();
MapperPyramid mappPyr(mapper);
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
// Print result
MapProjec* mapProj = dynamic_cast<MapProjec*>(mapPtr.get());
mapProj->normalize();
cout << endl << "--- Testing projective transformation mapper ---" << endl;
cout << Mat(projTr) << endl;
cout << Mat(mapProj->getProjTr()) << endl;
// Display registration accuracy
Mat dest;
mapProj->inverseWarp(img2, dest);
showDifference(img1, dest, DIFF_REGPIX_IM);
waitKey(0);
destroyWindow(DIFF_IM);
destroyWindow(DIFF_REGPIX_IM);
}
#ifdef COMPARE_FEATURES
//
// Following an example from
// http:// ramsrigoutham.com/2012/11/22/panorama-image-stitching-in-opencv/
//
static void calcHomographyFeature(const Mat& image1, const Mat& image2)
{
static const char* difffeat = "Difference feature registered";
Mat gray_image1;
Mat gray_image2;
// Convert to Grayscale
if(image1.channels() != 1)
cvtColor(image1, gray_image1, COLOR_BGR2GRAY);
else
image1.copyTo(gray_image1);
if(image2.channels() != 1)
cvtColor(image2, gray_image2, COLOR_BGR2GRAY);
else
image2.copyTo(gray_image2);
//-- Step 1: Detect the keypoints using SIFT or SURF Detector
#ifdef USE_SIFT
Ptr<Feature2D> features = SIFT::create();
#else
int minHessian = 400;
Ptr<Feature2D> features = SURF::create(minHessian);
#endif
std::vector<KeyPoint> keypoints_object, keypoints_scene;
features->detect(gray_image1, keypoints_object);
features->detect(gray_image2, keypoints_scene);
//-- Step 2: Calculate descriptors (feature vectors)
Mat descriptors_object, descriptors_scene;
features->compute(gray_image1, keypoints_object, descriptors_object);
features->compute(gray_image2, keypoints_scene, descriptors_scene);
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector<DMatch> matches;
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for(int i = 0; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist)
std::vector<DMatch> good_matches;
for(int i = 0; i < descriptors_object.rows; i++) {
if(matches[i].distance < 3*min_dist) {
good_matches.push_back( matches[i]);
}
}
std::vector< Point2f > obj;
std::vector< Point2f > scene;
for(size_t i = 0; i < good_matches.size(); i++)
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
// Find the Homography Matrix
Mat H = findHomography( obj, scene, RANSAC );
// Use the Homography Matrix to warp the images
Mat result;
Mat Hinv = H.inv();
warpPerspective(image2, result, Hinv, image1.size());
cout << "--- Feature method\n" << H << endl;
Mat imf1, resf;
image1.convertTo(imf1, CV_64FC3);
result.convertTo(resf, CV_64FC3);
showDifference(imf1, resf, difffeat);
}
static void calcHomographyPixel(const Mat& img1, const Mat& img2)
{
static const char* diffpixel = "Difference pixel registered";
// Register using pixel differences
Ptr<MapperGradProj> mapper = makePtr<MapperGradProj>();
MapperPyramid mappPyr(mapper);
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
// Print result
MapProjec* mapProj = dynamic_cast<MapProjec*>(mapPtr.get());
mapProj->normalize();
cout << "--- Pixel-based method\n" << Mat(mapProj->getProjTr()) << endl;
// Display registration accuracy
Mat dest;
mapProj->inverseWarp(img2, dest);
showDifference(img1, dest, diffpixel);
}
static void comparePixelVsFeature(const Mat& img1_8b, const Mat& img2_8b)
{
static const char* difforig = "Difference non-registered";
// Show difference of images
Mat img1, img2;
img1_8b.convertTo(img1, CV_64FC3);
img2_8b.convertTo(img2, CV_64FC3);
showDifference(img1, img2, difforig);
cout << endl << "--- Comparing feature-based with pixel difference based ---" << endl;
// Register using SURF keypoints
calcHomographyFeature(img1_8b, img2_8b);
// Register using pixel differences
calcHomographyPixel(img1, img2);
waitKey(0);
}
#endif
int main(void)
{
Mat img1;
img1 = imread("home.png", IMREAD_UNCHANGED);
if(!img1.data) {
cout << "Could not open or find file" << endl;
return -1;
}
// Convert to double, 3 channels
img1.convertTo(img1, CV_64FC3);
testShift(img1);
testEuclidean(img1);
testSimilarity(img1);
testAffine(img1);
testProjective(img1);
#ifdef COMPARE_FEATURES
Mat imgcmp1 = imread("LR_05.png", IMREAD_UNCHANGED);
if(!imgcmp1.data) {
cout << "Could not open or find file" << endl;
return -1;
}
Mat imgcmp2 = imread("LR_06.png", IMREAD_UNCHANGED);
if(!imgcmp2.data) {
cout << "Could not open or find file" << endl;
return -1;
}
comparePixelVsFeature(imgcmp1, imgcmp2);
#endif
return 0;
}