353 lines
12 KiB
C++
353 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
static string getDataDir() { return TS::ptr()->get_data_path(); }
|
|
|
|
static string getRubberWhaleFrame1() { return getDataDir() + "optflow/RubberWhale1.png"; }
|
|
|
|
static string getRubberWhaleFrame2() { return getDataDir() + "optflow/RubberWhale2.png"; }
|
|
|
|
static string getRubberWhaleGroundTruth() { return getDataDir() + "optflow/RubberWhale.flo"; }
|
|
|
|
static bool isFlowCorrect(float u) { return !cvIsNaN(u) && (fabs(u) < 1e9); }
|
|
|
|
static bool isFlowCorrect(double u) { return !cvIsNaN(u) && (fabs(u) < 1e9); }
|
|
|
|
static float calcRMSE(Mat flow1, Mat flow2)
|
|
{
|
|
float sum = 0;
|
|
int counter = 0;
|
|
const int rows = flow1.rows;
|
|
const int cols = flow1.cols;
|
|
|
|
for (int y = 0; y < rows; ++y)
|
|
{
|
|
for (int x = 0; x < cols; ++x)
|
|
{
|
|
Vec2f flow1_at_point = flow1.at<Vec2f>(y, x);
|
|
Vec2f flow2_at_point = flow2.at<Vec2f>(y, x);
|
|
|
|
float u1 = flow1_at_point[0];
|
|
float v1 = flow1_at_point[1];
|
|
float u2 = flow2_at_point[0];
|
|
float v2 = flow2_at_point[1];
|
|
|
|
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2))
|
|
{
|
|
sum += (u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2);
|
|
counter++;
|
|
}
|
|
}
|
|
}
|
|
return (float)sqrt(sum / (1e-9 + counter));
|
|
}
|
|
static float calcRMSE(vector<Point2f> prevPts, vector<Point2f> currPts, Mat flow)
|
|
{
|
|
vector<float> ee;
|
|
for (unsigned int n = 0; n < prevPts.size(); n++)
|
|
{
|
|
Point2f gtFlow = flow.at<Point2f>(prevPts[n]);
|
|
if (isFlowCorrect(gtFlow.x) && isFlowCorrect(gtFlow.y))
|
|
{
|
|
Point2f diffFlow = (currPts[n] - prevPts[n]) - gtFlow;
|
|
ee.push_back(sqrt(diffFlow.x * diffFlow.x + diffFlow.y * diffFlow.y));
|
|
}
|
|
}
|
|
return static_cast<float>(mean(ee).val[0]);
|
|
}
|
|
static float calcAvgEPE(vector< pair<Point2i, Point2i> > corr, Mat flow)
|
|
{
|
|
double sum = 0;
|
|
int counter = 0;
|
|
|
|
for (size_t i = 0; i < corr.size(); ++i)
|
|
{
|
|
Vec2f flow1_at_point = Point2f(corr[i].second - corr[i].first);
|
|
Vec2f flow2_at_point = flow.at<Vec2f>(corr[i].first.y, corr[i].first.x);
|
|
|
|
double u1 = (double)flow1_at_point[0];
|
|
double v1 = (double)flow1_at_point[1];
|
|
double u2 = (double)flow2_at_point[0];
|
|
double v2 = (double)flow2_at_point[1];
|
|
|
|
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2))
|
|
{
|
|
sum += sqrt((u1 - u2) * (u1 - u2) + (v1 - v2) * (v1 - v2));
|
|
counter++;
|
|
}
|
|
}
|
|
|
|
return (float)(sum / counter);
|
|
}
|
|
|
|
bool readRubberWhale(Mat &dst_frame_1, Mat &dst_frame_2, Mat &dst_GT)
|
|
{
|
|
string frame1_path = getRubberWhaleFrame1();
|
|
string frame2_path = getRubberWhaleFrame2();
|
|
string gt_flow_path = getRubberWhaleGroundTruth();
|
|
// removing space may be an issue on windows machines
|
|
frame1_path.erase(std::remove_if(frame1_path.begin(), frame1_path.end(), isspace), frame1_path.end());
|
|
frame2_path.erase(std::remove_if(frame2_path.begin(), frame2_path.end(), isspace), frame2_path.end());
|
|
gt_flow_path.erase(std::remove_if(gt_flow_path.begin(), gt_flow_path.end(), isspace), gt_flow_path.end());
|
|
|
|
dst_frame_1 = imread(frame1_path);
|
|
dst_frame_2 = imread(frame2_path);
|
|
dst_GT = readOpticalFlow(gt_flow_path);
|
|
|
|
if (dst_frame_1.empty() || dst_frame_2.empty() || dst_GT.empty())
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
|
|
|
|
TEST(DenseOpticalFlow_SimpleFlow, ReferenceAccuracy)
|
|
{
|
|
Mat frame1, frame2, GT;
|
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
|
|
float target_RMSE = 0.37f;
|
|
|
|
Mat flow;
|
|
Ptr<DenseOpticalFlow> algo;
|
|
algo = createOptFlow_SimpleFlow();
|
|
algo->calc(frame1, frame2, flow);
|
|
ASSERT_EQ(GT.rows, flow.rows);
|
|
ASSERT_EQ(GT.cols, flow.cols);
|
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
|
|
}
|
|
|
|
TEST(DenseOpticalFlow_DeepFlow, ReferenceAccuracy)
|
|
{
|
|
Mat frame1, frame2, GT;
|
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
|
|
float target_RMSE = 0.35f;
|
|
cvtColor(frame1, frame1, COLOR_BGR2GRAY);
|
|
cvtColor(frame2, frame2, COLOR_BGR2GRAY);
|
|
|
|
Mat flow;
|
|
Ptr<DenseOpticalFlow> algo;
|
|
algo = createOptFlow_DeepFlow();
|
|
algo->calc(frame1, frame2, flow);
|
|
ASSERT_EQ(GT.rows, flow.rows);
|
|
ASSERT_EQ(GT.cols, flow.cols);
|
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
|
|
}
|
|
|
|
TEST(SparseOpticalFlow, ReferenceAccuracy)
|
|
{
|
|
// with the following test each invoker class should be tested once
|
|
Mat frame1, frame2, GT;
|
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
|
|
vector<Point2f> prevPts, currPts;
|
|
for (int r = 0; r < frame1.rows; r+=10)
|
|
{
|
|
for (int c = 0; c < frame1.cols; c+=10)
|
|
{
|
|
prevPts.push_back(Point2f(static_cast<float>(c), static_cast<float>(r)));
|
|
}
|
|
}
|
|
vector<uchar> status(prevPts.size());
|
|
vector<float> err(prevPts.size());
|
|
Ptr<SparseRLOFOpticalFlow> algo = SparseRLOFOpticalFlow::create();
|
|
algo->setForwardBackward(0.0f);
|
|
Ptr<RLOFOpticalFlowParameter> param = Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter);
|
|
param->supportRegionType = SR_CROSS;
|
|
param->useIlluminationModel = true;
|
|
param->solverType = ST_BILINEAR;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->calc(frame1, frame2, prevPts, currPts, status, err);
|
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.3f);
|
|
|
|
param->solverType = ST_STANDART;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->calc(frame1, frame2, prevPts, currPts, status, err);
|
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.34f);
|
|
|
|
param->useIlluminationModel = false;
|
|
param->solverType = ST_BILINEAR;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->calc(frame1, frame2, prevPts, currPts, status, err);
|
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.27f);
|
|
|
|
param->solverType = ST_STANDART;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->calc(frame1, frame2, prevPts, currPts, status, err);
|
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.27f);
|
|
|
|
param->normSigma0 = numeric_limits<float>::max();
|
|
param->normSigma1 = numeric_limits<float>::max();
|
|
param->useIlluminationModel = true;
|
|
|
|
param->solverType = ST_BILINEAR;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->calc(frame1, frame2, prevPts, currPts, status, err);
|
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f);
|
|
|
|
param->solverType = ST_STANDART;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->calc(frame1, frame2, prevPts, currPts, status, err);
|
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f);
|
|
|
|
param->useIlluminationModel = false;
|
|
|
|
param->solverType = ST_BILINEAR;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->calc(frame1, frame2, prevPts, currPts, status, err);
|
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.80f);
|
|
|
|
param->solverType = ST_STANDART;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->calc(frame1, frame2, prevPts, currPts, status, err);
|
|
EXPECT_LE(calcRMSE(prevPts, currPts, GT), 0.28f);
|
|
}
|
|
|
|
TEST(DenseOpticalFlow_RLOF, ReferenceAccuracy)
|
|
{
|
|
Mat frame1, frame2, GT;
|
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
|
|
Mat flow;
|
|
Ptr<DenseRLOFOpticalFlow> algo = DenseRLOFOpticalFlow::create();
|
|
Ptr<RLOFOpticalFlowParameter> param = Ptr<RLOFOpticalFlowParameter>(new RLOFOpticalFlowParameter);
|
|
param->supportRegionType = SR_CROSS;
|
|
param->solverType = ST_BILINEAR;
|
|
algo->setRLOFOpticalFlowParameter(param);
|
|
algo->setForwardBackward(1.0f);
|
|
algo->setGridStep(cv::Size(4, 4));
|
|
algo->setInterpolation(INTERP_EPIC);
|
|
algo->calc(frame1, frame2, flow);
|
|
|
|
ASSERT_EQ(GT.rows, flow.rows);
|
|
ASSERT_EQ(GT.cols, flow.cols);
|
|
EXPECT_LE(calcRMSE(GT, flow), 0.46f);
|
|
|
|
algo->setInterpolation(INTERP_GEO);
|
|
algo->calc(frame1, frame2, flow);
|
|
|
|
ASSERT_EQ(GT.rows, flow.rows);
|
|
ASSERT_EQ(GT.cols, flow.cols);
|
|
EXPECT_LE(calcRMSE(GT, flow), 0.55f);
|
|
|
|
}
|
|
|
|
TEST(DenseOpticalFlow_SparseToDenseFlow, ReferenceAccuracy)
|
|
{
|
|
Mat frame1, frame2, GT;
|
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
|
|
float target_RMSE = 0.52f;
|
|
|
|
Mat flow;
|
|
Ptr<DenseOpticalFlow> algo;
|
|
algo = createOptFlow_SparseToDense();
|
|
algo->calc(frame1, frame2, flow);
|
|
ASSERT_EQ(GT.rows, flow.rows);
|
|
ASSERT_EQ(GT.cols, flow.cols);
|
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
|
|
}
|
|
|
|
TEST(DenseOpticalFlow_PCAFlow, ReferenceAccuracy)
|
|
{
|
|
Mat frame1, frame2, GT;
|
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
|
|
const float target_RMSE = 0.55f;
|
|
|
|
Mat flow;
|
|
Ptr<DenseOpticalFlow> algo = createOptFlow_PCAFlow();
|
|
algo->calc(frame1, frame2, flow);
|
|
ASSERT_EQ(GT.rows, flow.rows);
|
|
ASSERT_EQ(GT.cols, flow.cols);
|
|
EXPECT_LE(calcRMSE(GT, flow), target_RMSE);
|
|
}
|
|
|
|
TEST(DenseOpticalFlow_GlobalPatchColliderDCT, ReferenceAccuracy)
|
|
{
|
|
Mat frame1, frame2, GT;
|
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
|
|
|
|
const Size sz = frame1.size() / 2;
|
|
frame1 = frame1(Rect(0, 0, sz.width, sz.height));
|
|
frame2 = frame2(Rect(0, 0, sz.width, sz.height));
|
|
GT = GT(Rect(0, 0, sz.width, sz.height));
|
|
|
|
vector<Mat> img1, img2, gt;
|
|
vector< pair<Point2i, Point2i> > corr;
|
|
img1.push_back(frame1);
|
|
img2.push_back(frame2);
|
|
gt.push_back(GT);
|
|
|
|
Ptr< GPCForest<5> > forest = GPCForest<5>::create();
|
|
forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_DCT, false));
|
|
forest->findCorrespondences(frame1, frame2, corr);
|
|
|
|
ASSERT_LE(7500U, corr.size());
|
|
ASSERT_LE(calcAvgEPE(corr, GT), 0.5f);
|
|
}
|
|
|
|
TEST(DenseOpticalFlow_GlobalPatchColliderWHT, ReferenceAccuracy)
|
|
{
|
|
Mat frame1, frame2, GT;
|
|
ASSERT_TRUE(readRubberWhale(frame1, frame2, GT));
|
|
|
|
const Size sz = frame1.size() / 2;
|
|
frame1 = frame1(Rect(0, 0, sz.width, sz.height));
|
|
frame2 = frame2(Rect(0, 0, sz.width, sz.height));
|
|
GT = GT(Rect(0, 0, sz.width, sz.height));
|
|
|
|
vector<Mat> img1, img2, gt;
|
|
vector< pair<Point2i, Point2i> > corr;
|
|
img1.push_back(frame1);
|
|
img2.push_back(frame2);
|
|
gt.push_back(GT);
|
|
|
|
Ptr< GPCForest<5> > forest = GPCForest<5>::create();
|
|
forest->train(img1, img2, gt, GPCTrainingParams(8, 3, GPC_DESCRIPTOR_WHT, false));
|
|
forest->findCorrespondences(frame1, frame2, corr);
|
|
|
|
ASSERT_LE(7000U, corr.size());
|
|
ASSERT_LE(calcAvgEPE(corr, GT), 0.5f);
|
|
}
|
|
|
|
|
|
}} // namespace
|