OpenCV_4.2.0/opencv-4.2.0/modules/gapi/test/gapi_async_test.cpp

527 lines
16 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#include "test_precomp.hpp"
#include <opencv2/gapi/gcomputation_async.hpp>
#include <opencv2/gapi/gcompiled_async.hpp>
#include <opencv2/gapi/gasync_context.hpp>
#include <condition_variable>
#include <stdexcept>
namespace opencv_test
{
//Main idea behind these tests is to have the same test script that is parameterized in order to test all setups (GCompiled vs apply, callback vs future).
//So these differences are factored into devoted helper classes (mixins) which are then used by the common test script by help of CRTP.
//Actual GAPI Computation with parameters to run on is mixed into test via CRTP as well.
struct SumOfSum2x2 {
cv::GComputation sum_of_sum;
SumOfSum2x2() : sum_of_sum([]{
cv::GMat in;
cv::GScalar out = cv::gapi::sum(in + in);
return GComputation{in, out};
})
{}
const cv::Size sz{2, 2};
cv::Mat in_mat{sz, CV_8U, cv::Scalar(1)};
cv::Scalar out_sc;
cv::GCompiled compile(){
return sum_of_sum.compile(descr_of(in_mat));
}
cv::GComputation& computation(){
return sum_of_sum;
}
cv::GCompileArgs compile_args(){
return {};
}
cv::GRunArgs in_args(){
return cv::gin(in_mat);
}
cv::GRunArgsP out_args(){
return cv::gout(out_sc);
}
void verify(){
EXPECT_EQ(8, out_sc[0]);
}
};
namespace {
G_TYPED_KERNEL(GThrow, <GMat(GMat)>, "org.opencv.test.throw")
{
static GMatDesc outMeta(GMatDesc in) { return in; }
};
struct gthrow_exception : std::runtime_error {
using std::runtime_error::runtime_error;
};
GAPI_OCV_KERNEL(GThrowImpl, GThrow)
{
static void run(const cv::Mat& in, cv::Mat&)
{
//this condition is needed to avoid "Unreachable code" warning on windows inside OCVCallHelper
if (!in.empty())
{
throw gthrow_exception{"test"};
}
}
};
//TODO: unify with callback helper code
struct cancel_struct {
std::atomic<int> num_tasks_to_spawn;
cv::gapi::wip::GAsyncContext ctx;
cancel_struct(int tasks_to_spawn) : num_tasks_to_spawn(tasks_to_spawn) {}
};
G_TYPED_KERNEL(GCancelationAdHoc, <GMat(GMat, cancel_struct*)>, "org.opencv.test.cancel_ad_hoc")
{
static GMatDesc outMeta(GMatDesc in, cancel_struct* ) { return in; }
};
GAPI_OCV_KERNEL(GCancelationAdHocImpl, GCancelationAdHoc)
{
static void run(const cv::Mat& , cancel_struct* cancel_struct_p, cv::Mat&) {
auto& cancel_struct_ = * cancel_struct_p;
auto num_tasks_to_spawn = -- cancel_struct_.num_tasks_to_spawn;
cancel_struct_.ctx.cancel();
EXPECT_GT(num_tasks_to_spawn, 0)<<"Incorrect Test setup - to small number of tasks to feed the queue \n";
}
};
}
struct ExceptionOnExecution {
cv::GComputation throwing_gcomp;
ExceptionOnExecution() : throwing_gcomp([]{
cv::GMat in;
auto gout = GThrow::on(in);
return GComputation{in, gout};
})
{}
const cv::Size sz{2, 2};
cv::Mat in_mat{sz, CV_8U, cv::Scalar(1)};
cv::Mat out;
cv::GCompiled compile(){
return throwing_gcomp.compile(descr_of(in_mat), compile_args());
}
cv::GComputation& computation(){
return throwing_gcomp;
}
cv::GRunArgs in_args(){
return cv::gin(in_mat);
}
cv::GRunArgsP out_args(){
return cv::gout(out);
}
cv::GCompileArgs compile_args(){
auto pkg = cv::gapi::kernels<GThrowImpl>();
return cv::compile_args(pkg);
}
};
struct SelfCanceling {
cv::GComputation self_cancel;
SelfCanceling(cancel_struct* cancel_struct_p) : self_cancel([cancel_struct_p]{
cv::GMat in;
cv::GMat out = GCancelationAdHoc::on(in, cancel_struct_p);
return GComputation{in, out};
})
{}
const cv::Size sz{2, 2};
cv::Mat in_mat{sz, CV_8U, cv::Scalar(1)};
cv::Mat out_mat;
cv::GCompiled compile(){
return self_cancel.compile(descr_of(in_mat), compile_args());
}
cv::GComputation& computation(){
return self_cancel;
}
cv::GRunArgs in_args(){
return cv::gin(in_mat);
}
cv::GRunArgsP out_args(){
return cv::gout(out_mat);
}
cv::GCompileArgs compile_args(){
auto pkg = cv::gapi::kernels<GCancelationAdHocImpl>();
return cv::compile_args(pkg);
}
};
template<typename crtp_final_t>
struct crtp_cast {
template<typename crtp_base_t>
static crtp_final_t* crtp_cast_(crtp_base_t* this_)
{
return static_cast<crtp_final_t*>(this_);
}
};
//Test Mixin, hiding details of callback based notification
template<typename crtp_final_t>
struct CallBack: crtp_cast<crtp_final_t> {
std::atomic<bool> callback_called = {false};
std::mutex mtx;
std::exception_ptr ep;
std::condition_variable cv;
std::function<void(std::exception_ptr)> callback(){
return [&](std::exception_ptr ep_){
ep = ep_;
callback_called = true;
mtx.lock();
mtx.unlock();
cv.notify_one();
};
};
template<typename... Args >
void start_async(Args&&... args){
this->crtp_cast_(this)->async(callback(), std::forward<Args>(args)...);
}
template<typename... Args >
void start_async(cv::gapi::wip::GAsyncContext& ctx, Args&&... args){
this->crtp_cast_(this)->async(ctx, callback(), std::forward<Args>(args)...);
}
void wait_for_result()
{
std::unique_lock<std::mutex> lck{mtx};
cv.wait(lck,[&]{return callback_called == true;});
if (ep)
{
std::rethrow_exception(ep);
}
}
};
//Test Mixin, hiding details of future based notification
template<typename crtp_final_t>
struct Future: crtp_cast<crtp_final_t> {
std::future<void> f;
template<typename... Args >
void start_async(Args&&... args){
f = this->crtp_cast_(this)->async(std::forward<Args>(args)...);
}
void wait_for_result()
{
f.get();
}
};
//Test Mixin, hiding details of using compiled GAPI object
template<typename crtp_final_t>
struct AsyncCompiled : crtp_cast<crtp_final_t>{
template<typename... Args>
auto async(Args&&... args) -> decltype(cv::gapi::wip::async(std::declval<cv::GCompiled&>(), std::forward<Args>(args)...)){
auto gcmpld = this->crtp_cast_(this)->compile();
return cv::gapi::wip::async(gcmpld, std::forward<Args>(args)...);
}
template<typename... Args>
auto async(cv::gapi::wip::GAsyncContext& ctx, Args&&... args) ->
decltype(cv::gapi::wip::async(std::declval<cv::GCompiled&>(), std::forward<Args>(args)..., std::declval<cv::gapi::wip::GAsyncContext&>()))
{
auto gcmpld = this->crtp_cast_(this)->compile();
return cv::gapi::wip::async(gcmpld, std::forward<Args>(args)..., ctx);
}
};
//Test Mixin, hiding details of calling apply (async_apply) on GAPI Computation object
template<typename crtp_final_t>
struct AsyncApply : crtp_cast<crtp_final_t> {
template<typename... Args>
auto async(Args&&... args) ->
decltype(cv::gapi::wip::async_apply(std::declval<cv::GComputation&>(), std::forward<Args>(args)..., std::declval<cv::GCompileArgs>()))
{
return cv::gapi::wip::async_apply(
this->crtp_cast_(this)->computation(), std::forward<Args>(args)..., this->crtp_cast_(this)->compile_args()
);
}
template<typename... Args>
auto async(cv::gapi::wip::GAsyncContext& ctx, Args&&... args) ->
decltype(cv::gapi::wip::async_apply(std::declval<cv::GComputation&>(), std::forward<Args>(args)... , std::declval<cv::GCompileArgs>(), std::declval<cv::gapi::wip::GAsyncContext&>()))
{
return cv::gapi::wip::async_apply(
this->crtp_cast_(this)->computation(), std::forward<Args>(args)..., this->crtp_cast_(this)->compile_args(), ctx
);
}
};
template<typename case_t>
struct normal: ::testing::Test, case_t{};
TYPED_TEST_CASE_P(normal);
TYPED_TEST_P(normal, basic){
//Normal scenario: start function asynchronously and wait for the result, and verify it
this->start_async(this->in_args(), this->out_args());
this->wait_for_result();
this->verify();
}
REGISTER_TYPED_TEST_CASE_P(normal,
basic
);
template<typename case_t>
struct exception: ::testing::Test, case_t{};
TYPED_TEST_CASE_P(exception);
TYPED_TEST_P(exception, basic){
//Exceptional scenario: start function asynchronously and make sure exception is passed to the user
this->start_async(this->in_args(), this->out_args());
EXPECT_THROW(this->wait_for_result(), gthrow_exception);
}
REGISTER_TYPED_TEST_CASE_P(exception,
basic
);
template<typename case_t>
struct stress : ::testing::Test{};
TYPED_TEST_CASE_P(stress);
TYPED_TEST_P(stress, test){
//Some stress testing: use a number of threads to start a bunch of async requests
const std::size_t request_per_thread = 10;
const std::size_t number_of_threads = 4;
auto thread_body = [&](){
std::vector<TypeParam> requests(request_per_thread);
for (auto&& r : requests){
r.start_async(r.in_args(), r.out_args());
}
for (auto&& r : requests){
r.wait_for_result();
r.verify();
}
};
std::vector<std::thread> pool {number_of_threads};
for (auto&& t : pool){
t = std::thread{thread_body};
}
for (auto&& t : pool){
t.join();
}
}
REGISTER_TYPED_TEST_CASE_P(stress, test);
template<typename case_t>
struct cancel : ::testing::Test{};
TYPED_TEST_CASE_P(cancel);
TYPED_TEST_P(cancel, basic){
constexpr int num_tasks = 100;
cancel_struct cancel_struct_ {num_tasks};
std::vector<TypeParam> requests; requests.reserve(num_tasks);
for (auto i = num_tasks; i>0; i--){
requests.emplace_back(&cancel_struct_);
}
for (auto&& r : requests){
//first request will cancel other on it's execution
r.start_async(cancel_struct_.ctx, r.in_args(), r.out_args());
}
unsigned int canceled = 0 ;
for (auto&& r : requests){
try {
r.wait_for_result();
}catch (cv::gapi::wip::GAsyncCanceled&){
++canceled;
}
}
ASSERT_GT(canceled, 0u);
}
namespace {
GRunArgs deep_copy_out_args(const GRunArgsP& args ){
GRunArgs result; result.reserve(args.size());
for (auto&& arg : args){
//FIXME: replace this switch with use of visit() on variant, when it will be available
switch (arg.index()){
#if !defined(GAPI_STANDALONE)
case GRunArgP::index_of<cv::Mat*>() : result.emplace_back(*util::get<cv::Mat*>(arg)); break;
case GRunArgP::index_of<cv::Scalar*>() : result.emplace_back(*util::get<cv::Scalar*>(arg)); break;
case GRunArgP::index_of<cv::UMat*>() : result.emplace_back(*util::get<cv::UMat*>(arg)); break;
#endif // !defined(GAPI_STANDALONE)
case GRunArgP::index_of<cv::gapi::own::Mat*>() : result.emplace_back(*util::get<cv::gapi::own::Mat*> (arg)); break;
case GRunArgP::index_of<cv::gapi::own::Scalar*>() : result.emplace_back(*util::get<cv::gapi::own::Scalar*>(arg)); break;
case GRunArgP::index_of<cv::detail::VectorRef>() : result.emplace_back(util::get<cv::detail::VectorRef> (arg)); break;
default : ;
}
}
return result;
}
GRunArgsP args_p_from_args(GRunArgs& args){
GRunArgsP result; result.reserve(args.size());
for (auto&& arg : args){
switch (arg.index()){
#if !defined(GAPI_STANDALONE)
case GRunArg::index_of<cv::Mat>() : result.emplace_back(&util::get<cv::Mat>(arg)); break;
case GRunArg::index_of<cv::Scalar>() : result.emplace_back(&util::get<cv::Scalar>(arg)); break;
case GRunArg::index_of<cv::UMat>() : result.emplace_back(&util::get<cv::UMat>(arg)); break;
#endif // !defined(GAPI_STANDALONE)
case GRunArg::index_of<cv::gapi::own::Mat>() : result.emplace_back(&util::get<cv::gapi::own::Mat> (arg)); break;
case GRunArg::index_of<cv::gapi::own::Scalar>() : result.emplace_back(&util::get<cv::gapi::own::Scalar>(arg)); break;
case GRunArg::index_of<cv::detail::VectorRef>() : result.emplace_back(util::get<cv::detail::VectorRef> (arg)); break;
default : ;
}
}
return result;
}
}
REGISTER_TYPED_TEST_CASE_P(cancel, basic);
template<typename case_t>
struct output_args_lifetime : ::testing::Test{
static constexpr const int num_of_requests = 20;
};
TYPED_TEST_CASE_P(output_args_lifetime);
//There are intentionaly no actual checks (asserts and verify) in output_args_lifetime tests.
//They are more of example use-cases than real tests. (ASAN/valgrind can still catch issues here)
TYPED_TEST_P(output_args_lifetime, callback){
std::atomic<int> active_requests = {0};
for (int i=0; i<this->num_of_requests; i++)
{
TypeParam r;
//As output arguments are __captured by reference__ calling code
//__must__ ensure they live long enough to complete asynchronous activity.
//(i.e. live at least until callback is called)
auto out_args_ptr = std::make_shared<cv::GRunArgs>(deep_copy_out_args(r.out_args()));
//Extend lifetime of out_args_ptr content by capturing it into a callback
auto cb = [&active_requests, out_args_ptr](std::exception_ptr ){
--active_requests;
};
++active_requests;
r.async(cb, r.in_args(), args_p_from_args(*out_args_ptr));
}
while(active_requests){
std::this_thread::sleep_for(std::chrono::milliseconds{2});
}
}
TYPED_TEST_P(output_args_lifetime, future){
std::vector<std::future<void>> fs(this->num_of_requests);
std::vector<std::shared_ptr<cv::GRunArgs>> out_ptrs(this->num_of_requests);
for (int i=0; i<this->num_of_requests; i++)
{
TypeParam r;
//As output arguments are __captured by reference__ calling code
//__must__ ensure they live long enough to complete asynchronous activity.
//(i.e. live at least until future.get()/wait() is returned)
auto out_args_ptr = std::make_shared<cv::GRunArgs>(deep_copy_out_args(r.out_args()));
//Extend lifetime of out_args_ptr content
out_ptrs[i] = out_args_ptr;
fs[i] = r.async(r.in_args(), args_p_from_args(*out_args_ptr));
}
for (auto const& ftr : fs ){
ftr.wait();
}
}
REGISTER_TYPED_TEST_CASE_P(output_args_lifetime, callback, future);
//little helpers to match up all combinations of setups
template<typename compute_fixture_t, template<typename> class... args_t>
struct Case
: compute_fixture_t,
args_t<Case<compute_fixture_t, args_t...>> ...
{
template<typename... Args>
Case(Args&&... args) : compute_fixture_t(std::forward<Args>(args)...) { }
Case(Case const & ) = default;
Case(Case && ) = default;
Case() = default;
};
template<typename computation_t>
using cases = ::testing::Types<
Case<computation_t, CallBack, AsyncCompiled>,
Case<computation_t, CallBack, AsyncApply>,
Case<computation_t, Future, AsyncCompiled>,
Case<computation_t, Future, AsyncApply>
>;
INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPINormalFlow_, normal, cases<SumOfSum2x2>);
INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPIExceptionHandling_, exception, cases<ExceptionOnExecution>);
INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPIStress, stress, cases<SumOfSum2x2>);
INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPICancelation, cancel, cases<SelfCanceling>);
template<typename computation_t>
using explicit_wait_cases = ::testing::Types<
Case<computation_t, AsyncCompiled>,
Case<computation_t, AsyncApply>,
Case<computation_t, AsyncCompiled>,
Case<computation_t, AsyncApply>
>;
INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPIOutArgsLifetTime, output_args_lifetime, explicit_wait_cases<SumOfSum2x2>);
} // namespace opencv_test