OpenCV_4.2.0/opencv-4.2.0/samples/tapi/pyrlk_optical_flow.cpp

233 lines
7.0 KiB
C++

#include <iostream>
#include <vector>
#include <iomanip>
#include "opencv2/core/utility.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/video/video.hpp"
using namespace std;
using namespace cv;
typedef unsigned char uchar;
#define LOOP_NUM 10
int64 work_begin = 0;
int64 work_end = 0;
static void workBegin()
{
work_begin = getTickCount();
}
static void workEnd()
{
work_end += (getTickCount() - work_begin);
}
static double getTime()
{
return work_end * 1000. / getTickFrequency();
}
static void drawArrows(UMat& _frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status,
Scalar line_color = Scalar(0, 0, 255))
{
Mat frame = _frame.getMat(ACCESS_WRITE);
for (size_t i = 0; i < prevPts.size(); ++i)
{
if (status[i])
{
int line_thickness = 1;
Point p = prevPts[i];
Point q = nextPts[i];
double angle = atan2((double) p.y - q.y, (double) p.x - q.x);
double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) );
if (hypotenuse < 1.0)
continue;
// Here we lengthen the arrow by a factor of three.
q.x = (int) (p.x - 3 * hypotenuse * cos(angle));
q.y = (int) (p.y - 3 * hypotenuse * sin(angle));
// Now we draw the main line of the arrow.
line(frame, p, q, line_color, line_thickness);
// Now draw the tips of the arrow. I do some scaling so that the
// tips look proportional to the main line of the arrow.
p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4));
p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4));
line(frame, p, q, line_color, line_thickness);
p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4));
p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4));
line(frame, p, q, line_color, line_thickness);
}
}
}
int main(int argc, const char* argv[])
{
const char* keys =
"{ h help | | print help message }"
"{ l left | | specify left image }"
"{ r right | | specify right image }"
"{ c camera | 0 | enable camera capturing }"
"{ v video | | use video as input }"
"{ o output | pyrlk_output.jpg| specify output save path when input is images }"
"{ points | 1000 | specify points count [GoodFeatureToTrack] }"
"{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }"
"{ m cpu_mode | false | run without OpenCL }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help"))
{
cout << "Usage: pyrlk_optical_flow [options]" << endl;
cout << "Available options:" << endl;
cmd.printMessage();
return EXIT_SUCCESS;
}
bool defaultPicturesFail = true;
string fname0 = samples::findFile(cmd.get<string>("left"));
string fname1 = samples::findFile(cmd.get<string>("right"));
string vdofile = cmd.get<string>("video");
string outfile = cmd.get<string>("output");
int points = cmd.get<int>("points");
double minDist = cmd.get<double>("min_dist");
int inputName = cmd.get<int>("c");
UMat frame0;
imread(fname0, IMREAD_GRAYSCALE).copyTo(frame0);
UMat frame1;
imread(fname1, IMREAD_GRAYSCALE).copyTo(frame1);
vector<cv::Point2f> pts(points);
vector<cv::Point2f> nextPts(points);
vector<unsigned char> status(points);
vector<float> err;
cout << "Points count : " << points << endl << endl;
if (frame0.empty() || frame1.empty())
{
VideoCapture capture;
UMat frame, frameCopy;
UMat frame0Gray, frame1Gray;
UMat ptr0, ptr1;
if(vdofile.empty())
capture.open( inputName );
else
capture.open(vdofile.c_str());
int c = inputName ;
if(!capture.isOpened())
{
if(vdofile.empty())
cout << "Capture from CAM " << c << " didn't work" << endl;
else
cout << "Capture from file " << vdofile << " failed" <<endl;
if (defaultPicturesFail)
return EXIT_FAILURE;
goto nocamera;
}
cout << "In capture ..." << endl;
for(int i = 0;; i++)
{
if( !capture.read(frame) )
break;
if (i == 0)
{
frame.copyTo( frame0 );
cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
}
else
{
if (i%2 == 1)
{
frame.copyTo(frame1);
cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY);
ptr0 = frame0Gray;
ptr1 = frame1Gray;
}
else
{
frame.copyTo(frame0);
cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
ptr0 = frame1Gray;
ptr1 = frame0Gray;
}
pts.clear();
goodFeaturesToTrack(ptr0, pts, points, 0.01, 0.0);
if(pts.size() == 0)
continue;
calcOpticalFlowPyrLK(ptr0, ptr1, pts, nextPts, status, err);
if (i%2 == 1)
frame1.copyTo(frameCopy);
else
frame0.copyTo(frameCopy);
drawArrows(frameCopy, pts, nextPts, status, Scalar(255, 0, 0));
imshow("PyrLK [Sparse]", frameCopy);
}
char key = (char)waitKey(10);
if (key == 27)
break;
else if (key == 'm' || key == 'M')
{
ocl::setUseOpenCL(!cv::ocl::useOpenCL());
cout << "Switched to " << (ocl::useOpenCL() ? "OpenCL" : "CPU") << " mode\n";
}
}
capture.release();
}
else
{
nocamera:
if (cmd.has("cpu_mode"))
{
ocl::setUseOpenCL(false);
std::cout << "OpenCL was disabled" << std::endl;
}
for(int i = 0; i <= LOOP_NUM; i ++)
{
cout << "loop" << i << endl;
if (i > 0) workBegin();
goodFeaturesToTrack(frame0, pts, points, 0.01, minDist);
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
if (i > 0 && i <= LOOP_NUM)
workEnd();
if (i == LOOP_NUM)
{
cout << "average time (noCamera) : ";
cout << getTime() / LOOP_NUM << " ms" << endl;
drawArrows(frame0, pts, nextPts, status, Scalar(255, 0, 0));
imshow("PyrLK [Sparse]", frame0);
imwrite(outfile, frame0);
}
}
}
waitKey();
return EXIT_SUCCESS;
}