176 lines
6.1 KiB
C++
176 lines
6.1 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
const string FEATURES2D_DIR = "features2d";
|
|
const string IMAGE_FILENAME = "tsukuba.png";
|
|
const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors";
|
|
}} // namespace
|
|
|
|
#include "test_descriptors_regression.impl.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
/****************************************************************************************\
|
|
* Tests registrations *
|
|
\****************************************************************************************/
|
|
|
|
TEST( Features2d_DescriptorExtractor_BRISK, regression )
|
|
{
|
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brisk",
|
|
(CV_DescriptorExtractorTest<Hamming>::DistanceType)2.f,
|
|
BRISK::create() );
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor_ORB, regression )
|
|
{
|
|
// TODO adjust the parameters below
|
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-orb",
|
|
#if CV_NEON
|
|
(CV_DescriptorExtractorTest<Hamming>::DistanceType)25.f,
|
|
#else
|
|
(CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
|
|
#endif
|
|
ORB::create() );
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor_KAZE, regression )
|
|
{
|
|
CV_DescriptorExtractorTest< L2<float> > test( "descriptor-kaze", 0.03f,
|
|
KAZE::create(),
|
|
L2<float>(), KAZE::create() );
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor_AKAZE, regression )
|
|
{
|
|
CV_DescriptorExtractorTest<Hamming> test( "descriptor-akaze",
|
|
(CV_DescriptorExtractorTest<Hamming>::DistanceType)(486*0.05f),
|
|
AKAZE::create(),
|
|
Hamming(), AKAZE::create());
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor_AKAZE_DESCRIPTOR_KAZE, regression )
|
|
{
|
|
CV_DescriptorExtractorTest< L2<float> > test( "descriptor-akaze-with-kaze-desc", 0.03f,
|
|
AKAZE::create(AKAZE::DESCRIPTOR_KAZE),
|
|
L2<float>(), AKAZE::create(AKAZE::DESCRIPTOR_KAZE));
|
|
test.safe_run();
|
|
}
|
|
|
|
TEST( Features2d_DescriptorExtractor, batch )
|
|
{
|
|
string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf");
|
|
vector<Mat> imgs, descriptors;
|
|
vector<vector<KeyPoint> > keypoints;
|
|
int i, n = 6;
|
|
Ptr<ORB> orb = ORB::create();
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
string imgname = format("%s/img%d.png", path.c_str(), i+1);
|
|
Mat img = imread(imgname, 0);
|
|
imgs.push_back(img);
|
|
}
|
|
|
|
orb->detect(imgs, keypoints);
|
|
orb->compute(imgs, keypoints, descriptors);
|
|
|
|
ASSERT_EQ((int)keypoints.size(), n);
|
|
ASSERT_EQ((int)descriptors.size(), n);
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
EXPECT_GT((int)keypoints[i].size(), 100);
|
|
EXPECT_GT(descriptors[i].rows, 100);
|
|
}
|
|
}
|
|
|
|
class DescriptorImage : public TestWithParam<std::string>
|
|
{
|
|
protected:
|
|
virtual void SetUp() {
|
|
pattern = GetParam();
|
|
}
|
|
|
|
std::string pattern;
|
|
};
|
|
|
|
TEST_P(DescriptorImage, no_crash)
|
|
{
|
|
vector<String> fnames;
|
|
glob(cvtest::TS::ptr()->get_data_path() + pattern, fnames, false);
|
|
sort(fnames.begin(), fnames.end());
|
|
|
|
Ptr<AKAZE> akaze_mldb = AKAZE::create(AKAZE::DESCRIPTOR_MLDB);
|
|
Ptr<AKAZE> akaze_mldb_upright = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT);
|
|
Ptr<AKAZE> akaze_mldb_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 256);
|
|
Ptr<AKAZE> akaze_mldb_upright_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT, 256);
|
|
Ptr<AKAZE> akaze_kaze = AKAZE::create(AKAZE::DESCRIPTOR_KAZE);
|
|
Ptr<AKAZE> akaze_kaze_upright = AKAZE::create(AKAZE::DESCRIPTOR_KAZE_UPRIGHT);
|
|
Ptr<ORB> orb = ORB::create();
|
|
Ptr<KAZE> kaze = KAZE::create();
|
|
Ptr<BRISK> brisk = BRISK::create();
|
|
size_t n = fnames.size();
|
|
vector<KeyPoint> keypoints;
|
|
Mat descriptors;
|
|
orb->setMaxFeatures(5000);
|
|
|
|
for(size_t i = 0; i < n; i++ )
|
|
{
|
|
printf("%d. image: %s:\n", (int)i, fnames[i].c_str());
|
|
if( strstr(fnames[i].c_str(), "MP.png") != 0 )
|
|
{
|
|
printf("\tskip\n");
|
|
continue;
|
|
}
|
|
bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0;
|
|
|
|
Mat img = imread(fnames[i], -1);
|
|
|
|
printf("\t%dx%d\n", img.cols, img.rows);
|
|
|
|
#define TEST_DETECTOR(name, descriptor) \
|
|
keypoints.clear(); descriptors.release(); \
|
|
printf("\t" name "\n"); fflush(stdout); \
|
|
descriptor->detectAndCompute(img, noArray(), keypoints, descriptors); \
|
|
printf("\t\t\t(%d keypoints, descriptor size = %d)\n", (int)keypoints.size(), descriptors.cols); fflush(stdout); \
|
|
if (checkCount) \
|
|
{ \
|
|
EXPECT_GT((int)keypoints.size(), 0); \
|
|
} \
|
|
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
|
|
|
|
TEST_DETECTOR("AKAZE:MLDB", akaze_mldb);
|
|
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT", akaze_mldb_upright);
|
|
TEST_DETECTOR("AKAZE:MLDB_256", akaze_mldb_256);
|
|
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT_256", akaze_mldb_upright_256);
|
|
TEST_DETECTOR("AKAZE:KAZE", akaze_kaze);
|
|
TEST_DETECTOR("AKAZE:KAZE_UPRIGHT", akaze_kaze_upright);
|
|
TEST_DETECTOR("KAZE", kaze);
|
|
TEST_DETECTOR("ORB", orb);
|
|
TEST_DETECTOR("BRISK", brisk);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Features2d, DescriptorImage,
|
|
testing::Values(
|
|
"shared/lena.png",
|
|
"shared/box*.png",
|
|
"shared/fruits*.png",
|
|
"shared/airplane.png",
|
|
"shared/graffiti.png",
|
|
"shared/1_itseez-0001*.png",
|
|
"shared/pic*.png",
|
|
"shared/templ.png"
|
|
)
|
|
);
|
|
|
|
}} // namespace
|