110 lines
3.9 KiB
C++
110 lines
3.9 KiB
C++
#include "opencv2/face.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "opencv2/videoio.hpp"
|
|
#include "opencv2/objdetect.hpp"
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::face;
|
|
|
|
static bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
|
|
{
|
|
Mat gray;
|
|
|
|
if (image.channels() > 1)
|
|
cvtColor(image, gray, COLOR_BGR2GRAY);
|
|
else
|
|
gray = image.getMat().clone();
|
|
|
|
equalizeHist(gray, gray);
|
|
|
|
std::vector<Rect> faces_;
|
|
face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
|
|
Mat(faces_).copyTo(faces);
|
|
return true;
|
|
}
|
|
|
|
int main(int argc,char** argv){
|
|
//Give the path to the directory containing all the files containing data
|
|
CommandLineParser parser(argc, argv,
|
|
"{ help h usage ? | | give the following arguments in following format }"
|
|
"{ model_filename f | | (required) path to binary file storing the trained model which is to be loaded [example - /data/file.dat]}"
|
|
"{ video v | | (required) path to video in which face landmarks have to be detected.[example - /data/video.avi] }"
|
|
"{ face_cascade c | | Path to the face cascade xml file which you want to use as a detector}"
|
|
);
|
|
// Read in the input arguments
|
|
if (parser.has("help")){
|
|
parser.printMessage();
|
|
cerr << "TIP: Use absolute paths to avoid any problems with the software!" << endl;
|
|
return 0;
|
|
}
|
|
string filename(parser.get<string>("model_filename"));
|
|
if (filename.empty()){
|
|
parser.printMessage();
|
|
cerr << "The name of the model file to be loaded for detecting landmarks is not found" << endl;
|
|
return -1;
|
|
}
|
|
string video(parser.get<string>("video"));
|
|
if (video.empty()){
|
|
parser.printMessage();
|
|
cerr << "The name of the video file in which landmarks have to be detected is not found" << endl;
|
|
return -1;
|
|
}
|
|
string cascade_name(parser.get<string>("face_cascade"));
|
|
if (cascade_name.empty()){
|
|
parser.printMessage();
|
|
cerr << "The name of the cascade classifier to be loaded to detect faces is not found" << endl;
|
|
return -1;
|
|
}
|
|
VideoCapture cap(video);
|
|
if(!cap.isOpened()){
|
|
cerr<<"Video cannot be loaded. Give correct path"<<endl;
|
|
return -1;
|
|
}
|
|
//pass the face cascade xml file which you want to pass as a detector
|
|
CascadeClassifier face_cascade;
|
|
face_cascade.load(cascade_name);
|
|
FacemarkKazemi::Params params;
|
|
Ptr<FacemarkKazemi> facemark = FacemarkKazemi::create(params);
|
|
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
|
|
facemark->loadModel(filename);
|
|
cout<<"Loaded model"<<endl;
|
|
//vector to store the faces detected in the image
|
|
vector<Rect> faces;
|
|
vector< vector<Point2f> > shapes;
|
|
Mat img;
|
|
while(1){
|
|
faces.clear();
|
|
shapes.clear();
|
|
cap>>img;
|
|
//Detect faces in the current image
|
|
resize(img,img,Size(600,600), 0, 0, INTER_LINEAR_EXACT);
|
|
facemark->getFaces(img,faces);
|
|
if(faces.size()==0){
|
|
cout<<"No faces found in this frame"<<endl;
|
|
}
|
|
else{
|
|
for( size_t i = 0; i < faces.size(); i++ )
|
|
{
|
|
cv::rectangle(img,faces[i],Scalar( 255, 0, 0 ));
|
|
}
|
|
//vector to store the landmarks of all the faces in the image
|
|
if(facemark->fit(img,faces,shapes))
|
|
{
|
|
for(unsigned long i=0;i<faces.size();i++){
|
|
for(unsigned long k=0;k<shapes[i].size();k++)
|
|
cv::circle(img,shapes[i][k],3,cv::Scalar(0,0,255),FILLED);
|
|
}
|
|
}
|
|
}
|
|
namedWindow("Detected_shape");
|
|
imshow("Detected_shape",img);
|
|
if(waitKey(1) >= 0) break;
|
|
}
|
|
return 0;
|
|
} |