345 lines
14 KiB
Python
345 lines
14 KiB
Python
#!/usr/bin/env python
|
|
|
|
'''
|
|
CUDA-accelerated Computer Vision functions
|
|
'''
|
|
|
|
# Python 2/3 compatibility
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import cv2 as cv
|
|
import os
|
|
|
|
from tests_common import NewOpenCVTests, unittest
|
|
|
|
class cuda_test(NewOpenCVTests):
|
|
def setUp(self):
|
|
super(cuda_test, self).setUp()
|
|
if not cv.cuda.getCudaEnabledDeviceCount():
|
|
self.skipTest("No CUDA-capable device is detected")
|
|
|
|
def test_cuda_upload_download(self):
|
|
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
cuMat = cv.cuda_GpuMat()
|
|
cuMat.upload(npMat)
|
|
|
|
self.assertTrue(np.allclose(cuMat.download(), npMat))
|
|
|
|
def test_cudaarithm_arithmetic(self):
|
|
npMat1 = np.random.random((128, 128, 3)) - 0.5
|
|
npMat2 = np.random.random((128, 128, 3)) - 0.5
|
|
|
|
cuMat1 = cv.cuda_GpuMat()
|
|
cuMat2 = cv.cuda_GpuMat()
|
|
cuMat1.upload(npMat1)
|
|
cuMat2.upload(npMat2)
|
|
cuMatDst = cv.cuda_GpuMat(cuMat1.size(),cuMat1.type())
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.add(cuMat1, cuMat2).download(),
|
|
cv.add(npMat1, npMat2)))
|
|
|
|
cv.cuda.add(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.add(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.subtract(cuMat1, cuMat2).download(),
|
|
cv.subtract(npMat1, npMat2)))
|
|
|
|
cv.cuda.subtract(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.subtract(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.multiply(cuMat1, cuMat2).download(),
|
|
cv.multiply(npMat1, npMat2)))
|
|
|
|
cv.cuda.multiply(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.multiply(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.divide(cuMat1, cuMat2).download(),
|
|
cv.divide(npMat1, npMat2)))
|
|
|
|
cv.cuda.divide(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.divide(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.absdiff(cuMat1, cuMat2).download(),
|
|
cv.absdiff(npMat1, npMat2)))
|
|
|
|
cv.cuda.absdiff(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.absdiff(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE).download(),
|
|
cv.compare(npMat1, npMat2, cv.CMP_GE)))
|
|
|
|
cuMatDst1 = cv.cuda_GpuMat(cuMat1.size(),cv.CV_8UC3)
|
|
cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE, cuMatDst1)
|
|
self.assertTrue(np.allclose(cuMatDst1.download(),cv.compare(npMat1, npMat2, cv.CMP_GE)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.abs(cuMat1).download(),
|
|
np.abs(npMat1)))
|
|
|
|
cv.cuda.abs(cuMat1, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),np.abs(npMat1)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.sqrt(cv.cuda.sqr(cuMat1)).download(),
|
|
cv.cuda.abs(cuMat1).download()))
|
|
|
|
cv.cuda.sqr(cuMat1, cuMatDst)
|
|
cv.cuda.sqrt(cuMatDst, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.cuda.abs(cuMat1).download()))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.log(cv.cuda.exp(cuMat1)).download(),
|
|
npMat1))
|
|
|
|
cv.cuda.exp(cuMat1, cuMatDst)
|
|
cv.cuda.log(cuMatDst, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),npMat1))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.pow(cuMat1, 2).download(),
|
|
cv.pow(npMat1, 2)))
|
|
|
|
cv.cuda.pow(cuMat1, 2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.pow(npMat1, 2)))
|
|
|
|
def test_cudaarithm_logical(self):
|
|
npMat1 = (np.random.random((128, 128)) * 255).astype(np.uint8)
|
|
npMat2 = (np.random.random((128, 128)) * 255).astype(np.uint8)
|
|
|
|
cuMat1 = cv.cuda_GpuMat()
|
|
cuMat2 = cv.cuda_GpuMat()
|
|
cuMat1.upload(npMat1)
|
|
cuMat2.upload(npMat2)
|
|
cuMatDst = cv.cuda_GpuMat(cuMat1.size(),cuMat1.type())
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.bitwise_or(cuMat1, cuMat2).download(),
|
|
cv.bitwise_or(npMat1, npMat2)))
|
|
|
|
cv.cuda.bitwise_or(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_or(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.bitwise_and(cuMat1, cuMat2).download(),
|
|
cv.bitwise_and(npMat1, npMat2)))
|
|
|
|
cv.cuda.bitwise_and(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_and(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.bitwise_xor(cuMat1, cuMat2).download(),
|
|
cv.bitwise_xor(npMat1, npMat2)))
|
|
|
|
cv.cuda.bitwise_xor(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_xor(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.bitwise_not(cuMat1).download(),
|
|
cv.bitwise_not(npMat1)))
|
|
|
|
cv.cuda.bitwise_not(cuMat1, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.bitwise_not(npMat1)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.min(cuMat1, cuMat2).download(),
|
|
cv.min(npMat1, npMat2)))
|
|
|
|
cv.cuda.min(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.min(npMat1, npMat2)))
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.max(cuMat1, cuMat2).download(),
|
|
cv.max(npMat1, npMat2)))
|
|
|
|
cv.cuda.max(cuMat1, cuMat2, cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),cv.max(npMat1, npMat2)))
|
|
|
|
def test_cudaarithm_arithmetic(self):
|
|
npMat1 = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
|
|
cuMat1 = cv.cuda_GpuMat(npMat1)
|
|
cuMatDst = cv.cuda_GpuMat(cuMat1.size(),cuMat1.type())
|
|
cuMatB = cv.cuda_GpuMat(cuMat1.size(),cv.CV_8UC1)
|
|
cuMatG = cv.cuda_GpuMat(cuMat1.size(),cv.CV_8UC1)
|
|
cuMatR = cv.cuda_GpuMat(cuMat1.size(),cv.CV_8UC1)
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.merge(cv.cuda.split(cuMat1)),npMat1))
|
|
|
|
cv.cuda.split(cuMat1,[cuMatB,cuMatG,cuMatR])
|
|
cv.cuda.merge([cuMatB,cuMatG,cuMatR],cuMatDst)
|
|
self.assertTrue(np.allclose(cuMatDst.download(),npMat1))
|
|
|
|
def test_cudabgsegm_existence(self):
|
|
#Test at least the existence of wrapped functions for now
|
|
|
|
_bgsub = cv.cuda.createBackgroundSubtractorMOG()
|
|
_bgsub = cv.cuda.createBackgroundSubtractorMOG2()
|
|
|
|
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
|
|
|
@unittest.skipIf('OPENCV_TEST_DATA_PATH' not in os.environ,
|
|
"OPENCV_TEST_DATA_PATH is not defined")
|
|
def test_cudacodec(self):
|
|
#Test the functionality but not the results of the video reader
|
|
|
|
vid_path = os.environ['OPENCV_TEST_DATA_PATH'] + '/cv/video/1920x1080.avi'
|
|
try:
|
|
reader = cv.cudacodec.createVideoReader(vid_path)
|
|
ret, gpu_mat = reader.nextFrame()
|
|
self.assertTrue(ret)
|
|
self.assertTrue('GpuMat' in str(type(gpu_mat)), msg=type(gpu_mat))
|
|
#TODO: print(cv.utils.dumpInputArray(gpu_mat)) # - no support for GpuMat
|
|
|
|
# not checking output, therefore sepearate tests for different signatures is unecessary
|
|
ret, _gpu_mat2 = reader.nextFrame(gpu_mat)
|
|
#TODO: self.assertTrue(gpu_mat == gpu_mat2)
|
|
self.assertTrue(ret)
|
|
except cv.error as e:
|
|
notSupported = (e.code == cv.Error.StsNotImplemented or e.code == cv.Error.StsUnsupportedFormat or e.code == cv.Error.GPU_API_CALL_ERROR)
|
|
self.assertTrue(notSupported)
|
|
if e.code == cv.Error.StsNotImplemented:
|
|
self.skipTest("NVCUVID is not installed")
|
|
elif e.code == cv.Error.StsUnsupportedFormat:
|
|
self.skipTest("GPU hardware video decoder missing or video format not supported")
|
|
elif e.code == cv.Error.GPU_API_CALL_ERRROR:
|
|
self.skipTest("GPU hardware video decoder is missing")
|
|
else:
|
|
self.skipTest(e.err)
|
|
|
|
def test_cudacodec_writer_existence(self):
|
|
#Test at least the existence of wrapped functions for now
|
|
|
|
try:
|
|
_writer = cv.cudacodec.createVideoWriter("tmp", (128, 128), 30)
|
|
except cv.error as e:
|
|
self.assertEqual(e.code, cv.Error.StsNotImplemented)
|
|
self.skipTest("NVCUVENC is not installed")
|
|
|
|
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
|
|
|
def test_cudafeatures2d(self):
|
|
npMat1 = self.get_sample("samples/data/right01.jpg")
|
|
npMat2 = self.get_sample("samples/data/right02.jpg")
|
|
|
|
cuMat1 = cv.cuda_GpuMat()
|
|
cuMat2 = cv.cuda_GpuMat()
|
|
cuMat1.upload(npMat1)
|
|
cuMat2.upload(npMat2)
|
|
|
|
cuMat1 = cv.cuda.cvtColor(cuMat1, cv.COLOR_RGB2GRAY)
|
|
cuMat2 = cv.cuda.cvtColor(cuMat2, cv.COLOR_RGB2GRAY)
|
|
|
|
fast = cv.cuda_FastFeatureDetector.create()
|
|
_kps = fast.detectAsync(cuMat1)
|
|
|
|
orb = cv.cuda_ORB.create()
|
|
_kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None)
|
|
_kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None)
|
|
|
|
bf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_HAMMING)
|
|
matches = bf.match(descs1, descs2)
|
|
self.assertGreater(len(matches), 0)
|
|
matches = bf.knnMatch(descs1, descs2, 2)
|
|
self.assertGreater(len(matches), 0)
|
|
matches = bf.radiusMatch(descs1, descs2, 0.1)
|
|
self.assertGreater(len(matches), 0)
|
|
|
|
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
|
|
|
def test_cudafilters_existence(self):
|
|
#Test at least the existence of wrapped functions for now
|
|
|
|
_filter = cv.cuda.createBoxFilter(cv.CV_8UC1, -1, (3, 3))
|
|
_filter = cv.cuda.createLinearFilter(cv.CV_8UC4, -1, np.eye(3))
|
|
_filter = cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3)
|
|
_filter = cv.cuda.createSeparableLinearFilter(cv.CV_8UC1, -1, np.eye(3), np.eye(3))
|
|
_filter = cv.cuda.createDerivFilter(cv.CV_8UC1, -1, 1, 1, 3)
|
|
_filter = cv.cuda.createSobelFilter(cv.CV_8UC1, -1, 1, 1)
|
|
_filter = cv.cuda.createScharrFilter(cv.CV_8UC1, -1, 1, 0)
|
|
_filter = cv.cuda.createGaussianFilter(cv.CV_8UC1, -1, (3, 3), 16)
|
|
_filter = cv.cuda.createMorphologyFilter(cv.MORPH_DILATE, cv.CV_32FC1, np.eye(3))
|
|
_filter = cv.cuda.createBoxMaxFilter(cv.CV_8UC1, (3, 3))
|
|
_filter = cv.cuda.createBoxMinFilter(cv.CV_8UC1, (3, 3))
|
|
_filter = cv.cuda.createRowSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3)
|
|
_filter = cv.cuda.createColumnSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3)
|
|
_filter = cv.cuda.createMedianFilter(cv.CV_8UC1, 3)
|
|
|
|
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
|
|
|
def test_cudafilters_laplacian(self):
|
|
npMat = (np.random.random((128, 128)) * 255).astype(np.uint16)
|
|
cuMat = cv.cuda_GpuMat()
|
|
cuMat.upload(npMat)
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3).apply(cuMat).download(),
|
|
cv.Laplacian(npMat, cv.CV_16UC1, ksize=3)))
|
|
|
|
def test_cudaimgproc(self):
|
|
npC1 = (np.random.random((128, 128)) * 255).astype(np.uint8)
|
|
npC3 = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
npC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
|
|
cuC1 = cv.cuda_GpuMat()
|
|
cuC3 = cv.cuda_GpuMat()
|
|
cuC4 = cv.cuda_GpuMat()
|
|
cuC1.upload(npC1)
|
|
cuC3.upload(npC3)
|
|
cuC4.upload(npC4)
|
|
|
|
cv.cuda.cvtColor(cuC3, cv.COLOR_RGB2HSV)
|
|
cv.cuda.demosaicing(cuC1, cv.cuda.COLOR_BayerGR2BGR_MHT)
|
|
cv.cuda.gammaCorrection(cuC3)
|
|
cv.cuda.alphaComp(cuC4, cuC4, cv.cuda.ALPHA_XOR)
|
|
cv.cuda.calcHist(cuC1)
|
|
cv.cuda.equalizeHist(cuC1)
|
|
cv.cuda.evenLevels(3, 0, 255)
|
|
cv.cuda.meanShiftFiltering(cuC4, 10, 5)
|
|
cv.cuda.meanShiftProc(cuC4, 10, 5)
|
|
cv.cuda.bilateralFilter(cuC3, 3, 16, 3)
|
|
cv.cuda.blendLinear
|
|
|
|
cv.cuda.meanShiftSegmentation(cuC4, 10, 5, 5).download()
|
|
|
|
clahe = cv.cuda.createCLAHE()
|
|
clahe.apply(cuC1, cv.cuda_Stream.Null())
|
|
|
|
histLevels = cv.cuda.histEven(cuC3, 20, 0, 255)
|
|
cv.cuda.histRange(cuC1, histLevels)
|
|
|
|
detector = cv.cuda.createCannyEdgeDetector(0, 100)
|
|
detector.detect(cuC1)
|
|
|
|
detector = cv.cuda.createHoughLinesDetector(3, np.pi / 180, 20)
|
|
detector.detect(cuC1)
|
|
|
|
detector = cv.cuda.createHoughSegmentDetector(3, np.pi / 180, 20, 5)
|
|
detector.detect(cuC1)
|
|
|
|
detector = cv.cuda.createHoughCirclesDetector(3, 20, 10, 10, 20, 100)
|
|
detector.detect(cuC1)
|
|
|
|
detector = cv.cuda.createGeneralizedHoughBallard()
|
|
#BUG: detect accept only Mat!
|
|
#Even if generate_gpumat_decls is set to True, it only wraps overload CUDA functions.
|
|
#The problem is that Mat and GpuMat are not fully compatible to enable system-wide overloading
|
|
#detector.detect(cuC1, cuC1, cuC1)
|
|
|
|
detector = cv.cuda.createGeneralizedHoughGuil()
|
|
#BUG: same as above..
|
|
#detector.detect(cuC1, cuC1, cuC1)
|
|
|
|
detector = cv.cuda.createHarrisCorner(cv.CV_8UC1, 15, 5, 1)
|
|
detector.compute(cuC1)
|
|
|
|
detector = cv.cuda.createMinEigenValCorner(cv.CV_8UC1, 15, 5, 1)
|
|
detector.compute(cuC1)
|
|
|
|
detector = cv.cuda.createGoodFeaturesToTrackDetector(cv.CV_8UC1)
|
|
detector.detect(cuC1)
|
|
|
|
matcher = cv.cuda.createTemplateMatching(cv.CV_8UC1, cv.TM_CCOEFF_NORMED)
|
|
matcher.match(cuC3, cuC3)
|
|
|
|
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
|
|
|
def test_cudaimgproc_cvtColor(self):
|
|
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
cuMat = cv.cuda_GpuMat()
|
|
cuMat.upload(npMat)
|
|
|
|
self.assertTrue(np.allclose(cv.cuda.cvtColor(cuMat, cv.COLOR_BGR2HSV).download(),
|
|
cv.cvtColor(npMat, cv.COLOR_BGR2HSV)))
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|