213 lines
6.7 KiB
C++
213 lines
6.7 KiB
C++
#ifdef HAVE_OPENCV_DNN
|
|
typedef dnn::DictValue LayerId;
|
|
typedef std::vector<dnn::MatShape> vector_MatShape;
|
|
typedef std::vector<std::vector<dnn::MatShape> > vector_vector_MatShape;
|
|
|
|
template<>
|
|
bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const ArgInfo& info)
|
|
{
|
|
CV_UNUSED(info);
|
|
if (!o || o == Py_None)
|
|
return true; //Current state will be used
|
|
else if (PyLong_Check(o))
|
|
{
|
|
dv = dnn::DictValue((int64)PyLong_AsLongLong(o));
|
|
return true;
|
|
}
|
|
else if (PyInt_Check(o))
|
|
{
|
|
dv = dnn::DictValue((int64)PyInt_AS_LONG(o));
|
|
return true;
|
|
}
|
|
else if (PyFloat_Check(o))
|
|
{
|
|
dv = dnn::DictValue(PyFloat_AsDouble(o));
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
std::string str;
|
|
if (getUnicodeString(o, str))
|
|
{
|
|
dv = dnn::DictValue(str);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename T>
|
|
PyObject* pyopencv_from(const dnn::DictValue &dv)
|
|
{
|
|
if (dv.size() > 1)
|
|
{
|
|
std::vector<T> vec(dv.size());
|
|
for (int i = 0; i < dv.size(); ++i)
|
|
vec[i] = dv.get<T>(i);
|
|
return pyopencv_from_generic_vec(vec);
|
|
}
|
|
else
|
|
return pyopencv_from(dv.get<T>());
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const dnn::DictValue &dv)
|
|
{
|
|
if (dv.isInt()) return pyopencv_from<int>(dv);
|
|
if (dv.isReal()) return pyopencv_from<float>(dv);
|
|
if (dv.isString()) return pyopencv_from<String>(dv);
|
|
CV_Error(Error::StsNotImplemented, "Unknown value type");
|
|
return NULL;
|
|
}
|
|
|
|
template<>
|
|
PyObject* pyopencv_from(const dnn::LayerParams& lp)
|
|
{
|
|
PyObject* dict = PyDict_New();
|
|
for (std::map<String, dnn::DictValue>::const_iterator it = lp.begin(); it != lp.end(); ++it)
|
|
{
|
|
CV_Assert(!PyDict_SetItemString(dict, it->first.c_str(), pyopencv_from(it->second)));
|
|
}
|
|
return dict;
|
|
}
|
|
|
|
class pycvLayer CV_FINAL : public dnn::Layer
|
|
{
|
|
public:
|
|
pycvLayer(const dnn::LayerParams ¶ms, PyObject* pyLayer) : Layer(params)
|
|
{
|
|
PyGILState_STATE gstate;
|
|
gstate = PyGILState_Ensure();
|
|
|
|
PyObject* args = PyTuple_New(2);
|
|
CV_Assert(!PyTuple_SetItem(args, 0, pyopencv_from(params)));
|
|
CV_Assert(!PyTuple_SetItem(args, 1, pyopencv_from(params.blobs)));
|
|
o = PyObject_CallObject(pyLayer, args);
|
|
|
|
Py_DECREF(args);
|
|
PyGILState_Release(gstate);
|
|
if (!o)
|
|
CV_Error(Error::StsError, "Failed to create an instance of custom layer");
|
|
}
|
|
|
|
static void registerLayer(const std::string& type, PyObject* o)
|
|
{
|
|
std::map<std::string, std::vector<PyObject*> >::iterator it = pyLayers.find(type);
|
|
if (it != pyLayers.end())
|
|
it->second.push_back(o);
|
|
else
|
|
pyLayers[type] = std::vector<PyObject*>(1, o);
|
|
}
|
|
|
|
static void unregisterLayer(const std::string& type)
|
|
{
|
|
std::map<std::string, std::vector<PyObject*> >::iterator it = pyLayers.find(type);
|
|
if (it != pyLayers.end())
|
|
{
|
|
if (it->second.size() > 1)
|
|
it->second.pop_back();
|
|
else
|
|
pyLayers.erase(it);
|
|
}
|
|
}
|
|
|
|
static Ptr<dnn::Layer> create(dnn::LayerParams ¶ms)
|
|
{
|
|
std::map<std::string, std::vector<PyObject*> >::iterator it = pyLayers.find(params.type);
|
|
if (it == pyLayers.end())
|
|
CV_Error(Error::StsNotImplemented, "Layer with a type \"" + params.type +
|
|
"\" is not implemented");
|
|
CV_Assert(!it->second.empty());
|
|
return Ptr<dnn::Layer>(new pycvLayer(params, it->second.back()));
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
|
|
const int,
|
|
std::vector<std::vector<int> > &outputs,
|
|
std::vector<std::vector<int> > &) const CV_OVERRIDE
|
|
{
|
|
PyGILState_STATE gstate;
|
|
gstate = PyGILState_Ensure();
|
|
|
|
PyObject* args = PyList_New(inputs.size());
|
|
for(size_t i = 0; i < inputs.size(); ++i)
|
|
PyList_SetItem(args, i, pyopencv_from_generic_vec(inputs[i]));
|
|
|
|
PyObject* res = PyObject_CallMethodObjArgs(o, PyString_FromString("getMemoryShapes"), args, NULL);
|
|
Py_DECREF(args);
|
|
PyGILState_Release(gstate);
|
|
if (!res)
|
|
CV_Error(Error::StsNotImplemented, "Failed to call \"getMemoryShapes\" method");
|
|
CV_Assert(pyopencv_to_generic_vec(res, outputs, ArgInfo("", 0)));
|
|
return false;
|
|
}
|
|
|
|
virtual void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE
|
|
{
|
|
PyGILState_STATE gstate;
|
|
gstate = PyGILState_Ensure();
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
PyObject* args = pyopencv_from(inputs);
|
|
PyObject* res = PyObject_CallMethodObjArgs(o, PyString_FromString("forward"), args, NULL);
|
|
Py_DECREF(args);
|
|
PyGILState_Release(gstate);
|
|
if (!res)
|
|
CV_Error(Error::StsNotImplemented, "Failed to call \"forward\" method");
|
|
|
|
std::vector<Mat> pyOutputs;
|
|
CV_Assert(pyopencv_to(res, pyOutputs, ArgInfo("", 0)));
|
|
|
|
CV_Assert(pyOutputs.size() == outputs.size());
|
|
for (size_t i = 0; i < outputs.size(); ++i)
|
|
{
|
|
CV_Assert(pyOutputs[i].size == outputs[i].size);
|
|
CV_Assert(pyOutputs[i].type() == outputs[i].type());
|
|
pyOutputs[i].copyTo(outputs[i]);
|
|
}
|
|
}
|
|
|
|
private:
|
|
// Map layers types to python classes.
|
|
static std::map<std::string, std::vector<PyObject*> > pyLayers;
|
|
PyObject* o; // Instance of implemented python layer.
|
|
};
|
|
|
|
std::map<std::string, std::vector<PyObject*> > pycvLayer::pyLayers;
|
|
|
|
static PyObject *pyopencv_cv_dnn_registerLayer(PyObject*, PyObject *args, PyObject *kw)
|
|
{
|
|
const char *keywords[] = { "type", "class", NULL };
|
|
char* layerType;
|
|
PyObject *classInstance;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "sO", (char**)keywords, &layerType, &classInstance))
|
|
return NULL;
|
|
if (!PyCallable_Check(classInstance)) {
|
|
PyErr_SetString(PyExc_TypeError, "class must be callable");
|
|
return NULL;
|
|
}
|
|
|
|
pycvLayer::registerLayer(layerType, classInstance);
|
|
dnn::LayerFactory::registerLayer(layerType, pycvLayer::create);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject *pyopencv_cv_dnn_unregisterLayer(PyObject*, PyObject *args, PyObject *kw)
|
|
{
|
|
const char *keywords[] = { "type", NULL };
|
|
char* layerType;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "s", (char**)keywords, &layerType))
|
|
return NULL;
|
|
|
|
pycvLayer::unregisterLayer(layerType);
|
|
dnn::LayerFactory::unregisterLayer(layerType);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
#endif // HAVE_OPENCV_DNN
|