830 lines
25 KiB
C++
830 lines
25 KiB
C++
//M*//////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/****************************************************************************************\
|
|
* Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation.
|
|
* Contributed by Edgar Riba
|
|
\****************************************************************************************/
|
|
|
|
#include "precomp.hpp"
|
|
#include "upnp.h"
|
|
#include <limits>
|
|
|
|
#if 0 // fix buffer overflow first (FIXIT mark in .cpp file)
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
upnp::upnp(const Mat& cameraMatrix, const Mat& opoints, const Mat& ipoints)
|
|
{
|
|
if (cameraMatrix.depth() == CV_32F)
|
|
init_camera_parameters<float>(cameraMatrix);
|
|
else
|
|
init_camera_parameters<double>(cameraMatrix);
|
|
|
|
number_of_correspondences = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
|
|
|
|
pws.resize(3 * number_of_correspondences);
|
|
us.resize(2 * number_of_correspondences);
|
|
|
|
if (opoints.depth() == ipoints.depth())
|
|
{
|
|
if (opoints.depth() == CV_32F)
|
|
init_points<Point3f,Point2f>(opoints, ipoints);
|
|
else
|
|
init_points<Point3d,Point2d>(opoints, ipoints);
|
|
}
|
|
else if (opoints.depth() == CV_32F)
|
|
init_points<Point3f,Point2d>(opoints, ipoints);
|
|
else
|
|
init_points<Point3d,Point2f>(opoints, ipoints);
|
|
|
|
alphas.resize(4 * number_of_correspondences);
|
|
pcs.resize(3 * number_of_correspondences);
|
|
|
|
max_nr = 0;
|
|
A1 = NULL;
|
|
A2 = NULL;
|
|
}
|
|
|
|
upnp::~upnp()
|
|
{
|
|
if (A1)
|
|
delete[] A1;
|
|
if (A2)
|
|
delete[] A2;
|
|
}
|
|
|
|
double upnp::compute_pose(Mat& R, Mat& t)
|
|
{
|
|
choose_control_points();
|
|
compute_alphas();
|
|
|
|
Mat * M = new Mat(2 * number_of_correspondences, 12, CV_64F);
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++)
|
|
{
|
|
fill_M(M, 2 * i, &alphas[0] + 4 * i, us[2 * i], us[2 * i + 1]);
|
|
}
|
|
|
|
double mtm[12 * 12], d[12], ut[12 * 12], vt[12 * 12];
|
|
Mat MtM = Mat(12, 12, CV_64F, mtm);
|
|
Mat D = Mat(12, 1, CV_64F, d);
|
|
Mat Ut = Mat(12, 12, CV_64F, ut);
|
|
Mat Vt = Mat(12, 12, CV_64F, vt);
|
|
|
|
MtM = M->t() * (*M);
|
|
SVD::compute(MtM, D, Ut, Vt, SVD::MODIFY_A | SVD::FULL_UV);
|
|
Mat(Ut.t()).copyTo(Ut);
|
|
M->release();
|
|
delete M;
|
|
|
|
double l_6x12[6 * 12], rho[6];
|
|
Mat L_6x12 = Mat(6, 12, CV_64F, l_6x12);
|
|
Mat Rho = Mat(6, 1, CV_64F, rho);
|
|
|
|
compute_L_6x12(ut, l_6x12);
|
|
compute_rho(rho);
|
|
|
|
double Betas[3][4], Efs[3][1], rep_errors[3];
|
|
double Rs[3][3][3], ts[3][3];
|
|
|
|
find_betas_and_focal_approx_1(&Ut, &Rho, Betas[1], Efs[1]);
|
|
gauss_newton(&L_6x12, &Rho, Betas[1], Efs[1]);
|
|
rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]);
|
|
|
|
find_betas_and_focal_approx_2(&Ut, &Rho, Betas[2], Efs[2]);
|
|
gauss_newton(&L_6x12, &Rho, Betas[2], Efs[2]);
|
|
rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]);
|
|
|
|
int N = 1;
|
|
if (rep_errors[2] < rep_errors[1]) N = 2;
|
|
|
|
Mat(3, 1, CV_64F, ts[N]).copyTo(t);
|
|
Mat(3, 3, CV_64F, Rs[N]).copyTo(R);
|
|
fu = fv = Efs[N][0];
|
|
|
|
return fu;
|
|
}
|
|
|
|
void upnp::copy_R_and_t(const double R_src[3][3], const double t_src[3],
|
|
double R_dst[3][3], double t_dst[3])
|
|
{
|
|
for(int i = 0; i < 3; i++) {
|
|
for(int j = 0; j < 3; j++)
|
|
R_dst[i][j] = R_src[i][j];
|
|
t_dst[i] = t_src[i];
|
|
}
|
|
}
|
|
|
|
void upnp::estimate_R_and_t(double R[3][3], double t[3])
|
|
{
|
|
double pc0[3], pw0[3];
|
|
|
|
pc0[0] = pc0[1] = pc0[2] = 0.0;
|
|
pw0[0] = pw0[1] = pw0[2] = 0.0;
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
const double * pc = &pcs[3 * i];
|
|
const double * pw = &pws[3 * i];
|
|
|
|
for(int j = 0; j < 3; j++) {
|
|
pc0[j] += pc[j];
|
|
pw0[j] += pw[j];
|
|
}
|
|
}
|
|
for(int j = 0; j < 3; j++) {
|
|
pc0[j] /= number_of_correspondences;
|
|
pw0[j] /= number_of_correspondences;
|
|
}
|
|
|
|
double abt[3 * 3] = {0}, abt_d[3], abt_u[3 * 3], abt_v[3 * 3];
|
|
Mat ABt = Mat(3, 3, CV_64F, abt);
|
|
Mat ABt_D = Mat(3, 1, CV_64F, abt_d);
|
|
Mat ABt_U = Mat(3, 3, CV_64F, abt_u);
|
|
Mat ABt_V = Mat(3, 3, CV_64F, abt_v);
|
|
|
|
ABt.setTo(0.0);
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
double * pc = &pcs[3 * i];
|
|
double * pw = &pws[3 * i];
|
|
|
|
for(int j = 0; j < 3; j++) {
|
|
abt[3 * j ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]);
|
|
abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]);
|
|
abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]);
|
|
}
|
|
}
|
|
|
|
SVD::compute(ABt, ABt_D, ABt_U, ABt_V, SVD::MODIFY_A);
|
|
Mat(ABt_V.t()).copyTo(ABt_V);
|
|
|
|
for(int i = 0; i < 3; i++)
|
|
for(int j = 0; j < 3; j++)
|
|
R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j);
|
|
|
|
const double det =
|
|
R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] -
|
|
R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1];
|
|
|
|
if (det < 0) {
|
|
R[2][0] = -R[2][0];
|
|
R[2][1] = -R[2][1];
|
|
R[2][2] = -R[2][2];
|
|
}
|
|
|
|
t[0] = pc0[0] - dot(R[0], pw0);
|
|
t[1] = pc0[1] - dot(R[1], pw0);
|
|
t[2] = pc0[2] - dot(R[2], pw0);
|
|
}
|
|
|
|
void upnp::solve_for_sign(void)
|
|
{
|
|
if (pcs[2] < 0.0) {
|
|
for(int i = 0; i < 4; i++)
|
|
for(int j = 0; j < 3; j++)
|
|
ccs[i][j] = -ccs[i][j];
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
pcs[3 * i ] = -pcs[3 * i];
|
|
pcs[3 * i + 1] = -pcs[3 * i + 1];
|
|
pcs[3 * i + 2] = -pcs[3 * i + 2];
|
|
}
|
|
}
|
|
}
|
|
|
|
double upnp::compute_R_and_t(const double * ut, const double * betas,
|
|
double R[3][3], double t[3])
|
|
{
|
|
compute_ccs(betas, ut);
|
|
compute_pcs();
|
|
|
|
solve_for_sign();
|
|
|
|
estimate_R_and_t(R, t);
|
|
|
|
return reprojection_error(R, t);
|
|
}
|
|
|
|
double upnp::reprojection_error(const double R[3][3], const double t[3])
|
|
{
|
|
double sum2 = 0.0;
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
double * pw = &pws[3 * i];
|
|
double Xc = dot(R[0], pw) + t[0];
|
|
double Yc = dot(R[1], pw) + t[1];
|
|
double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]);
|
|
double ue = uc + fu * Xc * inv_Zc;
|
|
double ve = vc + fv * Yc * inv_Zc;
|
|
double u = us[2 * i], v = us[2 * i + 1];
|
|
|
|
sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) );
|
|
}
|
|
|
|
return sum2 / number_of_correspondences;
|
|
}
|
|
|
|
void upnp::choose_control_points()
|
|
{
|
|
for (int i = 0; i < 4; ++i)
|
|
cws[i][0] = cws[i][1] = cws[i][2] = 0.0;
|
|
cws[0][0] = cws[1][1] = cws[2][2] = 1.0;
|
|
}
|
|
|
|
void upnp::compute_alphas()
|
|
{
|
|
Mat CC = Mat(4, 3, CV_64F, &cws);
|
|
Mat PC = Mat(number_of_correspondences, 3, CV_64F, &pws[0]);
|
|
Mat ALPHAS = Mat(number_of_correspondences, 4, CV_64F, &alphas[0]);
|
|
|
|
Mat CC_ = CC.clone().t();
|
|
Mat PC_ = PC.clone().t();
|
|
|
|
Mat row14 = Mat::ones(1, 4, CV_64F);
|
|
Mat row1n = Mat::ones(1, number_of_correspondences, CV_64F);
|
|
|
|
CC_.push_back(row14);
|
|
PC_.push_back(row1n);
|
|
|
|
ALPHAS = Mat( CC_.inv() * PC_ ).t();
|
|
}
|
|
|
|
void upnp::fill_M(Mat * M, const int row, const double * as, const double u, const double v)
|
|
{
|
|
double * M1 = M->ptr<double>(row);
|
|
double * M2 = M1 + 12;
|
|
|
|
for(int i = 0; i < 4; i++) {
|
|
M1[3 * i ] = as[i] * fu;
|
|
M1[3 * i + 1] = 0.0;
|
|
M1[3 * i + 2] = as[i] * (uc - u);
|
|
|
|
M2[3 * i ] = 0.0;
|
|
M2[3 * i + 1] = as[i] * fv;
|
|
M2[3 * i + 2] = as[i] * (vc - v);
|
|
}
|
|
}
|
|
|
|
void upnp::compute_ccs(const double * betas, const double * ut)
|
|
{
|
|
for(int i = 0; i < 4; ++i)
|
|
ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0;
|
|
|
|
int N = 4;
|
|
for(int i = 0; i < N; ++i) {
|
|
const double * v = ut + 12 * (9 + i);
|
|
for(int j = 0; j < 4; ++j)
|
|
for(int k = 0; k < 3; ++k)
|
|
ccs[j][k] += betas[i] * v[3 * j + k]; // FIXIT: array subscript 144 is outside array bounds of 'double [144]' [-Warray-bounds]
|
|
// line 109: double ut[12 * 12]
|
|
// line 359: double u[12*12]
|
|
}
|
|
|
|
for (int i = 0; i < 4; ++i) ccs[i][2] *= fu;
|
|
}
|
|
|
|
void upnp::compute_pcs(void)
|
|
{
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
double * a = &alphas[0] + 4 * i;
|
|
double * pc = &pcs[0] + 3 * i;
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j];
|
|
}
|
|
}
|
|
|
|
void upnp::find_betas_and_focal_approx_1(Mat * Ut, Mat * Rho, double * betas, double * efs)
|
|
{
|
|
Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr<double>(11));
|
|
Mat dsq = Mat(6, 1, CV_64F, Rho->ptr<double>(0));
|
|
|
|
Mat D = compute_constraint_distance_2param_6eq_2unk_f_unk( Kmf1 );
|
|
Mat Dt = D.t();
|
|
|
|
Mat A = Dt * D;
|
|
Mat b = Dt * dsq;
|
|
|
|
Mat x = Mat(2, 1, CV_64F);
|
|
solve(A, b, x);
|
|
|
|
betas[0] = sqrt( abs( x.at<double>(0) ) );
|
|
betas[1] = betas[2] = betas[3] = 0.0;
|
|
|
|
efs[0] = sqrt( abs( x.at<double>(1) ) ) / betas[0];
|
|
}
|
|
|
|
void upnp::find_betas_and_focal_approx_2(Mat * Ut, Mat * Rho, double * betas, double * efs)
|
|
{
|
|
double u[12*12];
|
|
Mat U = Mat(12, 12, CV_64F, u);
|
|
Ut->copyTo(U);
|
|
|
|
Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr<double>(10));
|
|
Mat Kmf2 = Mat(12, 1, CV_64F, Ut->ptr<double>(11));
|
|
Mat dsq = Mat(6, 1, CV_64F, Rho->ptr<double>(0));
|
|
|
|
Mat D = compute_constraint_distance_3param_6eq_6unk_f_unk( Kmf1, Kmf2 );
|
|
|
|
Mat A = D;
|
|
Mat b = dsq;
|
|
|
|
double x[6];
|
|
Mat X = Mat(6, 1, CV_64F, x);
|
|
|
|
solve(A, b, X, DECOMP_QR);
|
|
|
|
double solutions[18][3];
|
|
generate_all_possible_solutions_for_f_unk(x, solutions);
|
|
|
|
// find solution with minimum reprojection error
|
|
double min_error = std::numeric_limits<double>::max();
|
|
int min_sol = 0;
|
|
for (int i = 0; i < 18; ++i) {
|
|
|
|
betas[3] = solutions[i][0];
|
|
betas[2] = solutions[i][1];
|
|
betas[1] = betas[0] = 0.0;
|
|
fu = fv = solutions[i][2];
|
|
|
|
double Rs[3][3], ts[3];
|
|
double error_i = compute_R_and_t( u, betas, Rs, ts);
|
|
|
|
if( error_i < min_error)
|
|
{
|
|
min_error = error_i;
|
|
min_sol = i;
|
|
}
|
|
}
|
|
|
|
betas[0] = solutions[min_sol][0];
|
|
betas[1] = solutions[min_sol][1];
|
|
betas[2] = betas[3] = 0.0;
|
|
|
|
efs[0] = solutions[min_sol][2];
|
|
}
|
|
|
|
Mat upnp::compute_constraint_distance_2param_6eq_2unk_f_unk(const Mat& M1)
|
|
{
|
|
Mat P = Mat(6, 2, CV_64F);
|
|
|
|
double m[13];
|
|
for (int i = 1; i < 13; ++i) m[i] = *M1.ptr<double>(i-1);
|
|
|
|
double t1 = pow( m[4], 2 );
|
|
double t4 = pow( m[1], 2 );
|
|
double t5 = pow( m[5], 2 );
|
|
double t8 = pow( m[2], 2 );
|
|
double t10 = pow( m[6], 2 );
|
|
double t13 = pow( m[3], 2 );
|
|
double t15 = pow( m[7], 2 );
|
|
double t18 = pow( m[8], 2 );
|
|
double t22 = pow( m[9], 2 );
|
|
double t26 = pow( m[10], 2 );
|
|
double t29 = pow( m[11], 2 );
|
|
double t33 = pow( m[12], 2 );
|
|
|
|
*P.ptr<double>(0,0) = t1 - 2 * m[4] * m[1] + t4 + t5 - 2 * m[5] * m[2] + t8;
|
|
*P.ptr<double>(0,1) = t10 - 2 * m[6] * m[3] + t13;
|
|
*P.ptr<double>(1,0) = t15 - 2 * m[7] * m[1] + t4 + t18 - 2 * m[8] * m[2] + t8;
|
|
*P.ptr<double>(1,1) = t22 - 2 * m[9] * m[3] + t13;
|
|
*P.ptr<double>(2,0) = t26 - 2 * m[10] * m[1] + t4 + t29 - 2 * m[11] * m[2] + t8;
|
|
*P.ptr<double>(2,1) = t33 - 2 * m[12] * m[3] + t13;
|
|
*P.ptr<double>(3,0) = t15 - 2 * m[7] * m[4] + t1 + t18 - 2 * m[8] * m[5] + t5;
|
|
*P.ptr<double>(3,1) = t22 - 2 * m[9] * m[6] + t10;
|
|
*P.ptr<double>(4,0) = t26 - 2 * m[10] * m[4] + t1 + t29 - 2 * m[11] * m[5] + t5;
|
|
*P.ptr<double>(4,1) = t33 - 2 * m[12] * m[6] + t10;
|
|
*P.ptr<double>(5,0) = t26 - 2 * m[10] * m[7] + t15 + t29 - 2 * m[11] * m[8] + t18;
|
|
*P.ptr<double>(5,1) = t33 - 2 * m[12] * m[9] + t22;
|
|
|
|
return P;
|
|
}
|
|
|
|
Mat upnp::compute_constraint_distance_3param_6eq_6unk_f_unk(const Mat& M1, const Mat& M2)
|
|
{
|
|
Mat P = Mat(6, 6, CV_64F);
|
|
|
|
double m[3][13];
|
|
for (int i = 1; i < 13; ++i)
|
|
{
|
|
m[1][i] = *M1.ptr<double>(i-1);
|
|
m[2][i] = *M2.ptr<double>(i-1);
|
|
}
|
|
|
|
double t1 = pow( m[1][4], 2 );
|
|
double t2 = pow( m[1][1], 2 );
|
|
double t7 = pow( m[1][5], 2 );
|
|
double t8 = pow( m[1][2], 2 );
|
|
double t11 = m[1][1] * m[2][1];
|
|
double t12 = m[1][5] * m[2][5];
|
|
double t15 = m[1][2] * m[2][2];
|
|
double t16 = m[1][4] * m[2][4];
|
|
double t19 = pow( m[2][4], 2 );
|
|
double t22 = pow( m[2][2], 2 );
|
|
double t23 = pow( m[2][1], 2 );
|
|
double t24 = pow( m[2][5], 2 );
|
|
double t28 = pow( m[1][6], 2 );
|
|
double t29 = pow( m[1][3], 2 );
|
|
double t34 = pow( m[1][3], 2 );
|
|
double t36 = m[1][6] * m[2][6];
|
|
double t40 = pow( m[2][6], 2 );
|
|
double t41 = pow( m[2][3], 2 );
|
|
double t47 = pow( m[1][7], 2 );
|
|
double t48 = pow( m[1][8], 2 );
|
|
double t52 = m[1][7] * m[2][7];
|
|
double t55 = m[1][8] * m[2][8];
|
|
double t59 = pow( m[2][8], 2 );
|
|
double t62 = pow( m[2][7], 2 );
|
|
double t64 = pow( m[1][9], 2 );
|
|
double t68 = m[1][9] * m[2][9];
|
|
double t74 = pow( m[2][9], 2 );
|
|
double t78 = pow( m[1][10], 2 );
|
|
double t79 = pow( m[1][11], 2 );
|
|
double t84 = m[1][10] * m[2][10];
|
|
double t87 = m[1][11] * m[2][11];
|
|
double t90 = pow( m[2][10], 2 );
|
|
double t95 = pow( m[2][11], 2 );
|
|
double t99 = pow( m[1][12], 2 );
|
|
double t101 = m[1][12] * m[2][12];
|
|
double t105 = pow( m[2][12], 2 );
|
|
|
|
*P.ptr<double>(0,0) = t1 + t2 - 2 * m[1][4] * m[1][1] - 2 * m[1][5] * m[1][2] + t7 + t8;
|
|
*P.ptr<double>(0,1) = -2 * m[2][4] * m[1][1] + 2 * t11 + 2 * t12 - 2 * m[1][4] * m[2][1] - 2 * m[2][5] * m[1][2] + 2 * t15 + 2 * t16 - 2 * m[1][5] * m[2][2];
|
|
*P.ptr<double>(0,2) = t19 - 2 * m[2][4] * m[2][1] + t22 + t23 + t24 - 2 * m[2][5] * m[2][2];
|
|
*P.ptr<double>(0,3) = t28 + t29 - 2 * m[1][6] * m[1][3];
|
|
*P.ptr<double>(0,4) = -2 * m[2][6] * m[1][3] + 2 * t34 - 2 * m[1][6] * m[2][3] + 2 * t36;
|
|
*P.ptr<double>(0,5) = -2 * m[2][6] * m[2][3] + t40 + t41;
|
|
|
|
*P.ptr<double>(1,0) = t8 - 2 * m[1][8] * m[1][2] - 2 * m[1][7] * m[1][1] + t47 + t48 + t2;
|
|
*P.ptr<double>(1,1) = 2 * t15 - 2 * m[1][8] * m[2][2] - 2 * m[2][8] * m[1][2] + 2 * t52 - 2 * m[1][7] * m[2][1] - 2 * m[2][7] * m[1][1] + 2 * t55 + 2 * t11;
|
|
*P.ptr<double>(1,2) = -2 * m[2][8] * m[2][2] + t22 + t23 + t59 - 2 * m[2][7] * m[2][1] + t62;
|
|
*P.ptr<double>(1,3) = t29 + t64 - 2 * m[1][9] * m[1][3];
|
|
*P.ptr<double>(1,4) = 2 * t34 + 2 * t68 - 2 * m[2][9] * m[1][3] - 2 * m[1][9] * m[2][3];
|
|
*P.ptr<double>(1,5) = -2 * m[2][9] * m[2][3] + t74 + t41;
|
|
|
|
*P.ptr<double>(2,0) = -2 * m[1][11] * m[1][2] + t2 + t8 + t78 + t79 - 2 * m[1][10] * m[1][1];
|
|
*P.ptr<double>(2,1) = 2 * t15 - 2 * m[1][11] * m[2][2] + 2 * t84 - 2 * m[1][10] * m[2][1] - 2 * m[2][10] * m[1][1] + 2 * t87 - 2 * m[2][11] * m[1][2]+ 2 * t11;
|
|
*P.ptr<double>(2,2) = t90 + t22 - 2 * m[2][10] * m[2][1] + t23 - 2 * m[2][11] * m[2][2] + t95;
|
|
*P.ptr<double>(2,3) = -2 * m[1][12] * m[1][3] + t99 + t29;
|
|
*P.ptr<double>(2,4) = 2 * t34 + 2 * t101 - 2 * m[2][12] * m[1][3] - 2 * m[1][12] * m[2][3];
|
|
*P.ptr<double>(2,5) = t41 + t105 - 2 * m[2][12] * m[2][3];
|
|
|
|
*P.ptr<double>(3,0) = t48 + t1 - 2 * m[1][8] * m[1][5] + t7 - 2 * m[1][7] * m[1][4] + t47;
|
|
*P.ptr<double>(3,1) = 2 * t16 - 2 * m[1][7] * m[2][4] + 2 * t55 + 2 * t52 - 2 * m[1][8] * m[2][5] - 2 * m[2][8] * m[1][5] - 2 * m[2][7] * m[1][4] + 2 * t12;
|
|
*P.ptr<double>(3,2) = t24 - 2 * m[2][8] * m[2][5] + t19 - 2 * m[2][7] * m[2][4] + t62 + t59;
|
|
*P.ptr<double>(3,3) = -2 * m[1][9] * m[1][6] + t64 + t28;
|
|
*P.ptr<double>(3,4) = 2 * t68 + 2 * t36 - 2 * m[2][9] * m[1][6] - 2 * m[1][9] * m[2][6];
|
|
*P.ptr<double>(3,5) = t40 + t74 - 2 * m[2][9] * m[2][6];
|
|
|
|
*P.ptr<double>(4,0) = t1 - 2 * m[1][10] * m[1][4] + t7 + t78 + t79 - 2 * m[1][11] * m[1][5];
|
|
*P.ptr<double>(4,1) = 2 * t84 - 2 * m[1][11] * m[2][5] - 2 * m[1][10] * m[2][4] + 2 * t16 - 2 * m[2][11] * m[1][5] + 2 * t87 - 2 * m[2][10] * m[1][4] + 2 * t12;
|
|
*P.ptr<double>(4,2) = t19 + t24 - 2 * m[2][10] * m[2][4] - 2 * m[2][11] * m[2][5] + t95 + t90;
|
|
*P.ptr<double>(4,3) = t28 - 2 * m[1][12] * m[1][6] + t99;
|
|
*P.ptr<double>(4,4) = 2 * t101 + 2 * t36 - 2 * m[2][12] * m[1][6] - 2 * m[1][12] * m[2][6];
|
|
*P.ptr<double>(4,5) = t105 - 2 * m[2][12] * m[2][6] + t40;
|
|
|
|
*P.ptr<double>(5,0) = -2 * m[1][10] * m[1][7] + t47 + t48 + t78 + t79 - 2 * m[1][11] * m[1][8];
|
|
*P.ptr<double>(5,1) = 2 * t84 + 2 * t87 - 2 * m[2][11] * m[1][8] - 2 * m[1][10] * m[2][7] - 2 * m[2][10] * m[1][7] + 2 * t55 + 2 * t52 - 2 * m[1][11] * m[2][8];
|
|
*P.ptr<double>(5,2) = -2 * m[2][10] * m[2][7] - 2 * m[2][11] * m[2][8] + t62 + t59 + t90 + t95;
|
|
*P.ptr<double>(5,3) = t64 - 2 * m[1][12] * m[1][9] + t99;
|
|
*P.ptr<double>(5,4) = 2 * t68 - 2 * m[2][12] * m[1][9] - 2 * m[1][12] * m[2][9] + 2 * t101;
|
|
*P.ptr<double>(5,5) = t105 - 2 * m[2][12] * m[2][9] + t74;
|
|
|
|
return P;
|
|
}
|
|
|
|
void upnp::generate_all_possible_solutions_for_f_unk(const double betas[5], double solutions[18][3])
|
|
{
|
|
int matrix_to_resolve[18][9] = {
|
|
{ 2, 0, 0, 1, 1, 0, 2, 0, 2 }, { 2, 0, 0, 1, 1, 0, 1, 1, 2 },
|
|
{ 2, 0, 0, 1, 1, 0, 0, 2, 2 }, { 2, 0, 0, 0, 2, 0, 2, 0, 2 },
|
|
{ 2, 0, 0, 0, 2, 0, 1, 1, 2 }, { 2, 0, 0, 0, 2, 0, 0, 2, 2 },
|
|
{ 2, 0, 0, 2, 0, 2, 1, 1, 2 }, { 2, 0, 0, 2, 0, 2, 0, 2, 2 },
|
|
{ 2, 0, 0, 1, 1, 2, 0, 2, 2 }, { 1, 1, 0, 0, 2, 0, 2, 0, 2 },
|
|
{ 1, 1, 0, 0, 2, 0, 1, 1, 2 }, { 1, 1, 0, 2, 0, 2, 0, 2, 2 },
|
|
{ 1, 1, 0, 2, 0, 2, 1, 1, 2 }, { 1, 1, 0, 2, 0, 2, 0, 2, 2 },
|
|
{ 1, 1, 0, 1, 1, 2, 0, 2, 2 }, { 0, 2, 0, 2, 0, 2, 1, 1, 2 },
|
|
{ 0, 2, 0, 2, 0, 2, 0, 2, 2 }, { 0, 2, 0, 1, 1, 2, 0, 2, 2 }
|
|
};
|
|
|
|
int combination[18][3] = {
|
|
{ 1, 2, 4 }, { 1, 2, 5 }, { 1, 2, 6 }, { 1, 3, 4 },
|
|
{ 1, 3, 5 }, { 1, 3, 6 }, { 1, 4, 5 }, { 1, 4, 6 },
|
|
{ 1, 5, 6 }, { 2, 3, 4 }, { 2, 3, 5 }, { 2, 3, 6 },
|
|
{ 2, 4, 5 }, { 2, 4, 6 }, { 2, 5, 6 }, { 3, 4, 5 },
|
|
{ 3, 4, 6 }, { 3, 5, 6 }
|
|
};
|
|
|
|
for (int i = 0; i < 18; ++i) {
|
|
double matrix[9], independent_term[3];
|
|
Mat M = Mat(3, 3, CV_64F, matrix);
|
|
Mat I = Mat(3, 1, CV_64F, independent_term);
|
|
Mat S = Mat(1, 3, CV_64F);
|
|
|
|
for (int j = 0; j < 9; ++j) matrix[j] = (double)matrix_to_resolve[i][j];
|
|
|
|
independent_term[0] = log( abs( betas[ combination[i][0]-1 ] ) );
|
|
independent_term[1] = log( abs( betas[ combination[i][1]-1 ] ) );
|
|
independent_term[2] = log( abs( betas[ combination[i][2]-1 ] ) );
|
|
|
|
exp( Mat(M.inv() * I), S);
|
|
|
|
solutions[i][0] = S.at<double>(0);
|
|
solutions[i][1] = S.at<double>(1) * sign( betas[1] );
|
|
solutions[i][2] = abs( S.at<double>(2) );
|
|
}
|
|
}
|
|
|
|
void upnp::gauss_newton(const Mat * L_6x12, const Mat * Rho, double betas[4], double * f)
|
|
{
|
|
const int iterations_number = 50;
|
|
|
|
double a[6*4], b[6], x[4] = {0};
|
|
Mat * A = new Mat(6, 4, CV_64F, a);
|
|
Mat * B = new Mat(6, 1, CV_64F, b);
|
|
Mat * X = new Mat(4, 1, CV_64F, x);
|
|
|
|
for(int k = 0; k < iterations_number; k++)
|
|
{
|
|
compute_A_and_b_gauss_newton(L_6x12->ptr<double>(0), Rho->ptr<double>(0), betas, A, B, f[0]);
|
|
qr_solve(A, B, X);
|
|
for(int i = 0; i < 3; i++)
|
|
betas[i] += x[i];
|
|
f[0] += x[3];
|
|
}
|
|
|
|
if (f[0] < 0) f[0] = -f[0];
|
|
fu = fv = f[0];
|
|
|
|
A->release();
|
|
delete A;
|
|
|
|
B->release();
|
|
delete B;
|
|
|
|
X->release();
|
|
delete X;
|
|
|
|
}
|
|
|
|
void upnp::compute_A_and_b_gauss_newton(const double * l_6x12, const double * rho,
|
|
const double betas[4], Mat * A, Mat * b, double const f)
|
|
{
|
|
|
|
for(int i = 0; i < 6; i++) {
|
|
const double * rowL = l_6x12 + i * 12;
|
|
double * rowA = A->ptr<double>(i);
|
|
|
|
rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] + rowL[2] * betas[2] + f*f * ( 2 * rowL[6]*betas[0] + rowL[7]*betas[1] + rowL[8]*betas[2] );
|
|
rowA[1] = rowL[1] * betas[0] + 2 * rowL[3] * betas[1] + rowL[4] * betas[2] + f*f * ( rowL[7]*betas[0] + 2 * rowL[9]*betas[1] + rowL[10]*betas[2] );
|
|
rowA[2] = rowL[2] * betas[0] + rowL[4] * betas[1] + 2 * rowL[5] * betas[2] + f*f * ( rowL[8]*betas[0] + rowL[10]*betas[1] + 2 * rowL[11]*betas[2] );
|
|
rowA[3] = 2*f * ( rowL[6]*betas[0]*betas[0] + rowL[7]*betas[0]*betas[1] + rowL[8]*betas[0]*betas[2] + rowL[9]*betas[1]*betas[1] + rowL[10]*betas[1]*betas[2] + rowL[11]*betas[2]*betas[2] ) ;
|
|
|
|
*b->ptr<double>(i) = rho[i] -
|
|
(
|
|
rowL[0] * betas[0] * betas[0] +
|
|
rowL[1] * betas[0] * betas[1] +
|
|
rowL[2] * betas[0] * betas[2] +
|
|
rowL[3] * betas[1] * betas[1] +
|
|
rowL[4] * betas[1] * betas[2] +
|
|
rowL[5] * betas[2] * betas[2] +
|
|
f*f * rowL[6] * betas[0] * betas[0] +
|
|
f*f * rowL[7] * betas[0] * betas[1] +
|
|
f*f * rowL[8] * betas[0] * betas[2] +
|
|
f*f * rowL[9] * betas[1] * betas[1] +
|
|
f*f * rowL[10] * betas[1] * betas[2] +
|
|
f*f * rowL[11] * betas[2] * betas[2]
|
|
);
|
|
}
|
|
}
|
|
|
|
void upnp::compute_L_6x12(const double * ut, double * l_6x12)
|
|
{
|
|
const double * v[3];
|
|
|
|
v[0] = ut + 12 * 9;
|
|
v[1] = ut + 12 * 10;
|
|
v[2] = ut + 12 * 11;
|
|
|
|
double dv[3][6][3];
|
|
|
|
for(int i = 0; i < 3; i++) {
|
|
int a = 0, b = 1;
|
|
for(int j = 0; j < 6; j++) {
|
|
dv[i][j][0] = v[i][3 * a ] - v[i][3 * b];
|
|
dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1];
|
|
dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2];
|
|
|
|
b++;
|
|
if (b > 3) {
|
|
a++;
|
|
b = a + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
for(int i = 0; i < 6; i++) {
|
|
double * row = l_6x12 + 12 * i;
|
|
|
|
row[0] = dotXY(dv[0][i], dv[0][i]);
|
|
row[1] = 2.0f * dotXY(dv[0][i], dv[1][i]);
|
|
row[2] = dotXY(dv[1][i], dv[1][i]);
|
|
row[3] = 2.0f * dotXY(dv[0][i], dv[2][i]);
|
|
row[4] = 2.0f * dotXY(dv[1][i], dv[2][i]);
|
|
row[5] = dotXY(dv[2][i], dv[2][i]);
|
|
|
|
row[6] = dotZ(dv[0][i], dv[0][i]);
|
|
row[7] = 2.0f * dotZ(dv[0][i], dv[1][i]);
|
|
row[8] = 2.0f * dotZ(dv[0][i], dv[2][i]);
|
|
row[9] = dotZ(dv[1][i], dv[1][i]);
|
|
row[10] = 2.0f * dotZ(dv[1][i], dv[2][i]);
|
|
row[11] = dotZ(dv[2][i], dv[2][i]);
|
|
}
|
|
}
|
|
|
|
void upnp::compute_rho(double * rho)
|
|
{
|
|
rho[0] = dist2(cws[0], cws[1]);
|
|
rho[1] = dist2(cws[0], cws[2]);
|
|
rho[2] = dist2(cws[0], cws[3]);
|
|
rho[3] = dist2(cws[1], cws[2]);
|
|
rho[4] = dist2(cws[1], cws[3]);
|
|
rho[5] = dist2(cws[2], cws[3]);
|
|
}
|
|
|
|
double upnp::dist2(const double * p1, const double * p2)
|
|
{
|
|
return
|
|
(p1[0] - p2[0]) * (p1[0] - p2[0]) +
|
|
(p1[1] - p2[1]) * (p1[1] - p2[1]) +
|
|
(p1[2] - p2[2]) * (p1[2] - p2[2]);
|
|
}
|
|
|
|
double upnp::dot(const double * v1, const double * v2)
|
|
{
|
|
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
|
|
}
|
|
|
|
double upnp::dotXY(const double * v1, const double * v2)
|
|
{
|
|
return v1[0] * v2[0] + v1[1] * v2[1];
|
|
}
|
|
|
|
double upnp::dotZ(const double * v1, const double * v2)
|
|
{
|
|
return v1[2] * v2[2];
|
|
}
|
|
|
|
double upnp::sign(const double v)
|
|
{
|
|
return ( v < 0.0 ) ? -1.0 : ( v > 0.0 ) ? 1.0 : 0.0;
|
|
}
|
|
|
|
void upnp::qr_solve(Mat * A, Mat * b, Mat * X)
|
|
{
|
|
const int nr = A->rows;
|
|
const int nc = A->cols;
|
|
if (nr <= 0 || nc <= 0)
|
|
return;
|
|
|
|
if (max_nr != 0 && max_nr < nr)
|
|
{
|
|
delete [] A1;
|
|
delete [] A2;
|
|
}
|
|
if (max_nr < nr)
|
|
{
|
|
max_nr = nr;
|
|
A1 = new double[nr];
|
|
A2 = new double[nr];
|
|
}
|
|
|
|
double * pA = A->ptr<double>(0), * ppAkk = pA;
|
|
for(int k = 0; k < nc; k++)
|
|
{
|
|
double * ppAik1 = ppAkk, eta = fabs(*ppAik1);
|
|
for(int i = k + 1; i < nr; i++)
|
|
{
|
|
double elt = fabs(*ppAik1);
|
|
if (eta < elt) eta = elt;
|
|
ppAik1 += nc;
|
|
}
|
|
if (eta == 0)
|
|
{
|
|
A1[k] = A2[k] = 0.0;
|
|
//cerr << "God damnit, A is singular, this shouldn't happen." << endl;
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
double * ppAik2 = ppAkk, sum2 = 0.0, inv_eta = 1. / eta;
|
|
for(int i = k; i < nr; i++)
|
|
{
|
|
*ppAik2 *= inv_eta;
|
|
sum2 += *ppAik2 * *ppAik2;
|
|
ppAik2 += nc;
|
|
}
|
|
double sigma = sqrt(sum2);
|
|
if (*ppAkk < 0)
|
|
sigma = -sigma;
|
|
*ppAkk += sigma;
|
|
A1[k] = sigma * *ppAkk;
|
|
A2[k] = -eta * sigma;
|
|
for(int j = k + 1; j < nc; j++)
|
|
{
|
|
double * ppAik = ppAkk, sum = 0;
|
|
for(int i = k; i < nr; i++)
|
|
{
|
|
sum += *ppAik * ppAik[j - k];
|
|
ppAik += nc;
|
|
}
|
|
double tau = sum / A1[k];
|
|
ppAik = ppAkk;
|
|
for(int i = k; i < nr; i++)
|
|
{
|
|
ppAik[j - k] -= tau * *ppAik;
|
|
ppAik += nc;
|
|
}
|
|
}
|
|
}
|
|
ppAkk += nc + 1;
|
|
}
|
|
|
|
// b <- Qt b
|
|
double * ppAjj = pA, * pb = b->ptr<double>(0);
|
|
for(int j = 0; j < nc; j++)
|
|
{
|
|
double * ppAij = ppAjj, tau = 0;
|
|
for(int i = j; i < nr; i++)
|
|
{
|
|
tau += *ppAij * pb[i];
|
|
ppAij += nc;
|
|
}
|
|
tau /= A1[j];
|
|
ppAij = ppAjj;
|
|
for(int i = j; i < nr; i++)
|
|
{
|
|
pb[i] -= tau * *ppAij;
|
|
ppAij += nc;
|
|
}
|
|
ppAjj += nc + 1;
|
|
}
|
|
|
|
// X = R-1 b
|
|
double * pX = X->ptr<double>(0);
|
|
pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
|
|
for(int i = nc - 2; i >= 0; i--)
|
|
{
|
|
double * ppAij = pA + i * nc + (i + 1), sum = 0;
|
|
|
|
for(int j = i + 1; j < nc; j++)
|
|
{
|
|
sum += *ppAij * pX[j];
|
|
ppAij++;
|
|
}
|
|
pX[i] = (pb[i] - sum) / A2[i];
|
|
}
|
|
}
|
|
|
|
#endif
|