OpenCV_4.2.0/opencv-4.2.0/modules/calib3d/src/upnp.cpp

830 lines
25 KiB
C++

//M*//////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/****************************************************************************************\
* Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation.
* Contributed by Edgar Riba
\****************************************************************************************/
#include "precomp.hpp"
#include "upnp.h"
#include <limits>
#if 0 // fix buffer overflow first (FIXIT mark in .cpp file)
using namespace std;
using namespace cv;
upnp::upnp(const Mat& cameraMatrix, const Mat& opoints, const Mat& ipoints)
{
if (cameraMatrix.depth() == CV_32F)
init_camera_parameters<float>(cameraMatrix);
else
init_camera_parameters<double>(cameraMatrix);
number_of_correspondences = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
pws.resize(3 * number_of_correspondences);
us.resize(2 * number_of_correspondences);
if (opoints.depth() == ipoints.depth())
{
if (opoints.depth() == CV_32F)
init_points<Point3f,Point2f>(opoints, ipoints);
else
init_points<Point3d,Point2d>(opoints, ipoints);
}
else if (opoints.depth() == CV_32F)
init_points<Point3f,Point2d>(opoints, ipoints);
else
init_points<Point3d,Point2f>(opoints, ipoints);
alphas.resize(4 * number_of_correspondences);
pcs.resize(3 * number_of_correspondences);
max_nr = 0;
A1 = NULL;
A2 = NULL;
}
upnp::~upnp()
{
if (A1)
delete[] A1;
if (A2)
delete[] A2;
}
double upnp::compute_pose(Mat& R, Mat& t)
{
choose_control_points();
compute_alphas();
Mat * M = new Mat(2 * number_of_correspondences, 12, CV_64F);
for(int i = 0; i < number_of_correspondences; i++)
{
fill_M(M, 2 * i, &alphas[0] + 4 * i, us[2 * i], us[2 * i + 1]);
}
double mtm[12 * 12], d[12], ut[12 * 12], vt[12 * 12];
Mat MtM = Mat(12, 12, CV_64F, mtm);
Mat D = Mat(12, 1, CV_64F, d);
Mat Ut = Mat(12, 12, CV_64F, ut);
Mat Vt = Mat(12, 12, CV_64F, vt);
MtM = M->t() * (*M);
SVD::compute(MtM, D, Ut, Vt, SVD::MODIFY_A | SVD::FULL_UV);
Mat(Ut.t()).copyTo(Ut);
M->release();
delete M;
double l_6x12[6 * 12], rho[6];
Mat L_6x12 = Mat(6, 12, CV_64F, l_6x12);
Mat Rho = Mat(6, 1, CV_64F, rho);
compute_L_6x12(ut, l_6x12);
compute_rho(rho);
double Betas[3][4], Efs[3][1], rep_errors[3];
double Rs[3][3][3], ts[3][3];
find_betas_and_focal_approx_1(&Ut, &Rho, Betas[1], Efs[1]);
gauss_newton(&L_6x12, &Rho, Betas[1], Efs[1]);
rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]);
find_betas_and_focal_approx_2(&Ut, &Rho, Betas[2], Efs[2]);
gauss_newton(&L_6x12, &Rho, Betas[2], Efs[2]);
rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]);
int N = 1;
if (rep_errors[2] < rep_errors[1]) N = 2;
Mat(3, 1, CV_64F, ts[N]).copyTo(t);
Mat(3, 3, CV_64F, Rs[N]).copyTo(R);
fu = fv = Efs[N][0];
return fu;
}
void upnp::copy_R_and_t(const double R_src[3][3], const double t_src[3],
double R_dst[3][3], double t_dst[3])
{
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++)
R_dst[i][j] = R_src[i][j];
t_dst[i] = t_src[i];
}
}
void upnp::estimate_R_and_t(double R[3][3], double t[3])
{
double pc0[3], pw0[3];
pc0[0] = pc0[1] = pc0[2] = 0.0;
pw0[0] = pw0[1] = pw0[2] = 0.0;
for(int i = 0; i < number_of_correspondences; i++) {
const double * pc = &pcs[3 * i];
const double * pw = &pws[3 * i];
for(int j = 0; j < 3; j++) {
pc0[j] += pc[j];
pw0[j] += pw[j];
}
}
for(int j = 0; j < 3; j++) {
pc0[j] /= number_of_correspondences;
pw0[j] /= number_of_correspondences;
}
double abt[3 * 3] = {0}, abt_d[3], abt_u[3 * 3], abt_v[3 * 3];
Mat ABt = Mat(3, 3, CV_64F, abt);
Mat ABt_D = Mat(3, 1, CV_64F, abt_d);
Mat ABt_U = Mat(3, 3, CV_64F, abt_u);
Mat ABt_V = Mat(3, 3, CV_64F, abt_v);
ABt.setTo(0.0);
for(int i = 0; i < number_of_correspondences; i++) {
double * pc = &pcs[3 * i];
double * pw = &pws[3 * i];
for(int j = 0; j < 3; j++) {
abt[3 * j ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]);
abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]);
abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]);
}
}
SVD::compute(ABt, ABt_D, ABt_U, ABt_V, SVD::MODIFY_A);
Mat(ABt_V.t()).copyTo(ABt_V);
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j);
const double det =
R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] -
R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1];
if (det < 0) {
R[2][0] = -R[2][0];
R[2][1] = -R[2][1];
R[2][2] = -R[2][2];
}
t[0] = pc0[0] - dot(R[0], pw0);
t[1] = pc0[1] - dot(R[1], pw0);
t[2] = pc0[2] - dot(R[2], pw0);
}
void upnp::solve_for_sign(void)
{
if (pcs[2] < 0.0) {
for(int i = 0; i < 4; i++)
for(int j = 0; j < 3; j++)
ccs[i][j] = -ccs[i][j];
for(int i = 0; i < number_of_correspondences; i++) {
pcs[3 * i ] = -pcs[3 * i];
pcs[3 * i + 1] = -pcs[3 * i + 1];
pcs[3 * i + 2] = -pcs[3 * i + 2];
}
}
}
double upnp::compute_R_and_t(const double * ut, const double * betas,
double R[3][3], double t[3])
{
compute_ccs(betas, ut);
compute_pcs();
solve_for_sign();
estimate_R_and_t(R, t);
return reprojection_error(R, t);
}
double upnp::reprojection_error(const double R[3][3], const double t[3])
{
double sum2 = 0.0;
for(int i = 0; i < number_of_correspondences; i++) {
double * pw = &pws[3 * i];
double Xc = dot(R[0], pw) + t[0];
double Yc = dot(R[1], pw) + t[1];
double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]);
double ue = uc + fu * Xc * inv_Zc;
double ve = vc + fv * Yc * inv_Zc;
double u = us[2 * i], v = us[2 * i + 1];
sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) );
}
return sum2 / number_of_correspondences;
}
void upnp::choose_control_points()
{
for (int i = 0; i < 4; ++i)
cws[i][0] = cws[i][1] = cws[i][2] = 0.0;
cws[0][0] = cws[1][1] = cws[2][2] = 1.0;
}
void upnp::compute_alphas()
{
Mat CC = Mat(4, 3, CV_64F, &cws);
Mat PC = Mat(number_of_correspondences, 3, CV_64F, &pws[0]);
Mat ALPHAS = Mat(number_of_correspondences, 4, CV_64F, &alphas[0]);
Mat CC_ = CC.clone().t();
Mat PC_ = PC.clone().t();
Mat row14 = Mat::ones(1, 4, CV_64F);
Mat row1n = Mat::ones(1, number_of_correspondences, CV_64F);
CC_.push_back(row14);
PC_.push_back(row1n);
ALPHAS = Mat( CC_.inv() * PC_ ).t();
}
void upnp::fill_M(Mat * M, const int row, const double * as, const double u, const double v)
{
double * M1 = M->ptr<double>(row);
double * M2 = M1 + 12;
for(int i = 0; i < 4; i++) {
M1[3 * i ] = as[i] * fu;
M1[3 * i + 1] = 0.0;
M1[3 * i + 2] = as[i] * (uc - u);
M2[3 * i ] = 0.0;
M2[3 * i + 1] = as[i] * fv;
M2[3 * i + 2] = as[i] * (vc - v);
}
}
void upnp::compute_ccs(const double * betas, const double * ut)
{
for(int i = 0; i < 4; ++i)
ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0;
int N = 4;
for(int i = 0; i < N; ++i) {
const double * v = ut + 12 * (9 + i);
for(int j = 0; j < 4; ++j)
for(int k = 0; k < 3; ++k)
ccs[j][k] += betas[i] * v[3 * j + k]; // FIXIT: array subscript 144 is outside array bounds of 'double [144]' [-Warray-bounds]
// line 109: double ut[12 * 12]
// line 359: double u[12*12]
}
for (int i = 0; i < 4; ++i) ccs[i][2] *= fu;
}
void upnp::compute_pcs(void)
{
for(int i = 0; i < number_of_correspondences; i++) {
double * a = &alphas[0] + 4 * i;
double * pc = &pcs[0] + 3 * i;
for(int j = 0; j < 3; j++)
pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j];
}
}
void upnp::find_betas_and_focal_approx_1(Mat * Ut, Mat * Rho, double * betas, double * efs)
{
Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr<double>(11));
Mat dsq = Mat(6, 1, CV_64F, Rho->ptr<double>(0));
Mat D = compute_constraint_distance_2param_6eq_2unk_f_unk( Kmf1 );
Mat Dt = D.t();
Mat A = Dt * D;
Mat b = Dt * dsq;
Mat x = Mat(2, 1, CV_64F);
solve(A, b, x);
betas[0] = sqrt( abs( x.at<double>(0) ) );
betas[1] = betas[2] = betas[3] = 0.0;
efs[0] = sqrt( abs( x.at<double>(1) ) ) / betas[0];
}
void upnp::find_betas_and_focal_approx_2(Mat * Ut, Mat * Rho, double * betas, double * efs)
{
double u[12*12];
Mat U = Mat(12, 12, CV_64F, u);
Ut->copyTo(U);
Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr<double>(10));
Mat Kmf2 = Mat(12, 1, CV_64F, Ut->ptr<double>(11));
Mat dsq = Mat(6, 1, CV_64F, Rho->ptr<double>(0));
Mat D = compute_constraint_distance_3param_6eq_6unk_f_unk( Kmf1, Kmf2 );
Mat A = D;
Mat b = dsq;
double x[6];
Mat X = Mat(6, 1, CV_64F, x);
solve(A, b, X, DECOMP_QR);
double solutions[18][3];
generate_all_possible_solutions_for_f_unk(x, solutions);
// find solution with minimum reprojection error
double min_error = std::numeric_limits<double>::max();
int min_sol = 0;
for (int i = 0; i < 18; ++i) {
betas[3] = solutions[i][0];
betas[2] = solutions[i][1];
betas[1] = betas[0] = 0.0;
fu = fv = solutions[i][2];
double Rs[3][3], ts[3];
double error_i = compute_R_and_t( u, betas, Rs, ts);
if( error_i < min_error)
{
min_error = error_i;
min_sol = i;
}
}
betas[0] = solutions[min_sol][0];
betas[1] = solutions[min_sol][1];
betas[2] = betas[3] = 0.0;
efs[0] = solutions[min_sol][2];
}
Mat upnp::compute_constraint_distance_2param_6eq_2unk_f_unk(const Mat& M1)
{
Mat P = Mat(6, 2, CV_64F);
double m[13];
for (int i = 1; i < 13; ++i) m[i] = *M1.ptr<double>(i-1);
double t1 = pow( m[4], 2 );
double t4 = pow( m[1], 2 );
double t5 = pow( m[5], 2 );
double t8 = pow( m[2], 2 );
double t10 = pow( m[6], 2 );
double t13 = pow( m[3], 2 );
double t15 = pow( m[7], 2 );
double t18 = pow( m[8], 2 );
double t22 = pow( m[9], 2 );
double t26 = pow( m[10], 2 );
double t29 = pow( m[11], 2 );
double t33 = pow( m[12], 2 );
*P.ptr<double>(0,0) = t1 - 2 * m[4] * m[1] + t4 + t5 - 2 * m[5] * m[2] + t8;
*P.ptr<double>(0,1) = t10 - 2 * m[6] * m[3] + t13;
*P.ptr<double>(1,0) = t15 - 2 * m[7] * m[1] + t4 + t18 - 2 * m[8] * m[2] + t8;
*P.ptr<double>(1,1) = t22 - 2 * m[9] * m[3] + t13;
*P.ptr<double>(2,0) = t26 - 2 * m[10] * m[1] + t4 + t29 - 2 * m[11] * m[2] + t8;
*P.ptr<double>(2,1) = t33 - 2 * m[12] * m[3] + t13;
*P.ptr<double>(3,0) = t15 - 2 * m[7] * m[4] + t1 + t18 - 2 * m[8] * m[5] + t5;
*P.ptr<double>(3,1) = t22 - 2 * m[9] * m[6] + t10;
*P.ptr<double>(4,0) = t26 - 2 * m[10] * m[4] + t1 + t29 - 2 * m[11] * m[5] + t5;
*P.ptr<double>(4,1) = t33 - 2 * m[12] * m[6] + t10;
*P.ptr<double>(5,0) = t26 - 2 * m[10] * m[7] + t15 + t29 - 2 * m[11] * m[8] + t18;
*P.ptr<double>(5,1) = t33 - 2 * m[12] * m[9] + t22;
return P;
}
Mat upnp::compute_constraint_distance_3param_6eq_6unk_f_unk(const Mat& M1, const Mat& M2)
{
Mat P = Mat(6, 6, CV_64F);
double m[3][13];
for (int i = 1; i < 13; ++i)
{
m[1][i] = *M1.ptr<double>(i-1);
m[2][i] = *M2.ptr<double>(i-1);
}
double t1 = pow( m[1][4], 2 );
double t2 = pow( m[1][1], 2 );
double t7 = pow( m[1][5], 2 );
double t8 = pow( m[1][2], 2 );
double t11 = m[1][1] * m[2][1];
double t12 = m[1][5] * m[2][5];
double t15 = m[1][2] * m[2][2];
double t16 = m[1][4] * m[2][4];
double t19 = pow( m[2][4], 2 );
double t22 = pow( m[2][2], 2 );
double t23 = pow( m[2][1], 2 );
double t24 = pow( m[2][5], 2 );
double t28 = pow( m[1][6], 2 );
double t29 = pow( m[1][3], 2 );
double t34 = pow( m[1][3], 2 );
double t36 = m[1][6] * m[2][6];
double t40 = pow( m[2][6], 2 );
double t41 = pow( m[2][3], 2 );
double t47 = pow( m[1][7], 2 );
double t48 = pow( m[1][8], 2 );
double t52 = m[1][7] * m[2][7];
double t55 = m[1][8] * m[2][8];
double t59 = pow( m[2][8], 2 );
double t62 = pow( m[2][7], 2 );
double t64 = pow( m[1][9], 2 );
double t68 = m[1][9] * m[2][9];
double t74 = pow( m[2][9], 2 );
double t78 = pow( m[1][10], 2 );
double t79 = pow( m[1][11], 2 );
double t84 = m[1][10] * m[2][10];
double t87 = m[1][11] * m[2][11];
double t90 = pow( m[2][10], 2 );
double t95 = pow( m[2][11], 2 );
double t99 = pow( m[1][12], 2 );
double t101 = m[1][12] * m[2][12];
double t105 = pow( m[2][12], 2 );
*P.ptr<double>(0,0) = t1 + t2 - 2 * m[1][4] * m[1][1] - 2 * m[1][5] * m[1][2] + t7 + t8;
*P.ptr<double>(0,1) = -2 * m[2][4] * m[1][1] + 2 * t11 + 2 * t12 - 2 * m[1][4] * m[2][1] - 2 * m[2][5] * m[1][2] + 2 * t15 + 2 * t16 - 2 * m[1][5] * m[2][2];
*P.ptr<double>(0,2) = t19 - 2 * m[2][4] * m[2][1] + t22 + t23 + t24 - 2 * m[2][5] * m[2][2];
*P.ptr<double>(0,3) = t28 + t29 - 2 * m[1][6] * m[1][3];
*P.ptr<double>(0,4) = -2 * m[2][6] * m[1][3] + 2 * t34 - 2 * m[1][6] * m[2][3] + 2 * t36;
*P.ptr<double>(0,5) = -2 * m[2][6] * m[2][3] + t40 + t41;
*P.ptr<double>(1,0) = t8 - 2 * m[1][8] * m[1][2] - 2 * m[1][7] * m[1][1] + t47 + t48 + t2;
*P.ptr<double>(1,1) = 2 * t15 - 2 * m[1][8] * m[2][2] - 2 * m[2][8] * m[1][2] + 2 * t52 - 2 * m[1][7] * m[2][1] - 2 * m[2][7] * m[1][1] + 2 * t55 + 2 * t11;
*P.ptr<double>(1,2) = -2 * m[2][8] * m[2][2] + t22 + t23 + t59 - 2 * m[2][7] * m[2][1] + t62;
*P.ptr<double>(1,3) = t29 + t64 - 2 * m[1][9] * m[1][3];
*P.ptr<double>(1,4) = 2 * t34 + 2 * t68 - 2 * m[2][9] * m[1][3] - 2 * m[1][9] * m[2][3];
*P.ptr<double>(1,5) = -2 * m[2][9] * m[2][3] + t74 + t41;
*P.ptr<double>(2,0) = -2 * m[1][11] * m[1][2] + t2 + t8 + t78 + t79 - 2 * m[1][10] * m[1][1];
*P.ptr<double>(2,1) = 2 * t15 - 2 * m[1][11] * m[2][2] + 2 * t84 - 2 * m[1][10] * m[2][1] - 2 * m[2][10] * m[1][1] + 2 * t87 - 2 * m[2][11] * m[1][2]+ 2 * t11;
*P.ptr<double>(2,2) = t90 + t22 - 2 * m[2][10] * m[2][1] + t23 - 2 * m[2][11] * m[2][2] + t95;
*P.ptr<double>(2,3) = -2 * m[1][12] * m[1][3] + t99 + t29;
*P.ptr<double>(2,4) = 2 * t34 + 2 * t101 - 2 * m[2][12] * m[1][3] - 2 * m[1][12] * m[2][3];
*P.ptr<double>(2,5) = t41 + t105 - 2 * m[2][12] * m[2][3];
*P.ptr<double>(3,0) = t48 + t1 - 2 * m[1][8] * m[1][5] + t7 - 2 * m[1][7] * m[1][4] + t47;
*P.ptr<double>(3,1) = 2 * t16 - 2 * m[1][7] * m[2][4] + 2 * t55 + 2 * t52 - 2 * m[1][8] * m[2][5] - 2 * m[2][8] * m[1][5] - 2 * m[2][7] * m[1][4] + 2 * t12;
*P.ptr<double>(3,2) = t24 - 2 * m[2][8] * m[2][5] + t19 - 2 * m[2][7] * m[2][4] + t62 + t59;
*P.ptr<double>(3,3) = -2 * m[1][9] * m[1][6] + t64 + t28;
*P.ptr<double>(3,4) = 2 * t68 + 2 * t36 - 2 * m[2][9] * m[1][6] - 2 * m[1][9] * m[2][6];
*P.ptr<double>(3,5) = t40 + t74 - 2 * m[2][9] * m[2][6];
*P.ptr<double>(4,0) = t1 - 2 * m[1][10] * m[1][4] + t7 + t78 + t79 - 2 * m[1][11] * m[1][5];
*P.ptr<double>(4,1) = 2 * t84 - 2 * m[1][11] * m[2][5] - 2 * m[1][10] * m[2][4] + 2 * t16 - 2 * m[2][11] * m[1][5] + 2 * t87 - 2 * m[2][10] * m[1][4] + 2 * t12;
*P.ptr<double>(4,2) = t19 + t24 - 2 * m[2][10] * m[2][4] - 2 * m[2][11] * m[2][5] + t95 + t90;
*P.ptr<double>(4,3) = t28 - 2 * m[1][12] * m[1][6] + t99;
*P.ptr<double>(4,4) = 2 * t101 + 2 * t36 - 2 * m[2][12] * m[1][6] - 2 * m[1][12] * m[2][6];
*P.ptr<double>(4,5) = t105 - 2 * m[2][12] * m[2][6] + t40;
*P.ptr<double>(5,0) = -2 * m[1][10] * m[1][7] + t47 + t48 + t78 + t79 - 2 * m[1][11] * m[1][8];
*P.ptr<double>(5,1) = 2 * t84 + 2 * t87 - 2 * m[2][11] * m[1][8] - 2 * m[1][10] * m[2][7] - 2 * m[2][10] * m[1][7] + 2 * t55 + 2 * t52 - 2 * m[1][11] * m[2][8];
*P.ptr<double>(5,2) = -2 * m[2][10] * m[2][7] - 2 * m[2][11] * m[2][8] + t62 + t59 + t90 + t95;
*P.ptr<double>(5,3) = t64 - 2 * m[1][12] * m[1][9] + t99;
*P.ptr<double>(5,4) = 2 * t68 - 2 * m[2][12] * m[1][9] - 2 * m[1][12] * m[2][9] + 2 * t101;
*P.ptr<double>(5,5) = t105 - 2 * m[2][12] * m[2][9] + t74;
return P;
}
void upnp::generate_all_possible_solutions_for_f_unk(const double betas[5], double solutions[18][3])
{
int matrix_to_resolve[18][9] = {
{ 2, 0, 0, 1, 1, 0, 2, 0, 2 }, { 2, 0, 0, 1, 1, 0, 1, 1, 2 },
{ 2, 0, 0, 1, 1, 0, 0, 2, 2 }, { 2, 0, 0, 0, 2, 0, 2, 0, 2 },
{ 2, 0, 0, 0, 2, 0, 1, 1, 2 }, { 2, 0, 0, 0, 2, 0, 0, 2, 2 },
{ 2, 0, 0, 2, 0, 2, 1, 1, 2 }, { 2, 0, 0, 2, 0, 2, 0, 2, 2 },
{ 2, 0, 0, 1, 1, 2, 0, 2, 2 }, { 1, 1, 0, 0, 2, 0, 2, 0, 2 },
{ 1, 1, 0, 0, 2, 0, 1, 1, 2 }, { 1, 1, 0, 2, 0, 2, 0, 2, 2 },
{ 1, 1, 0, 2, 0, 2, 1, 1, 2 }, { 1, 1, 0, 2, 0, 2, 0, 2, 2 },
{ 1, 1, 0, 1, 1, 2, 0, 2, 2 }, { 0, 2, 0, 2, 0, 2, 1, 1, 2 },
{ 0, 2, 0, 2, 0, 2, 0, 2, 2 }, { 0, 2, 0, 1, 1, 2, 0, 2, 2 }
};
int combination[18][3] = {
{ 1, 2, 4 }, { 1, 2, 5 }, { 1, 2, 6 }, { 1, 3, 4 },
{ 1, 3, 5 }, { 1, 3, 6 }, { 1, 4, 5 }, { 1, 4, 6 },
{ 1, 5, 6 }, { 2, 3, 4 }, { 2, 3, 5 }, { 2, 3, 6 },
{ 2, 4, 5 }, { 2, 4, 6 }, { 2, 5, 6 }, { 3, 4, 5 },
{ 3, 4, 6 }, { 3, 5, 6 }
};
for (int i = 0; i < 18; ++i) {
double matrix[9], independent_term[3];
Mat M = Mat(3, 3, CV_64F, matrix);
Mat I = Mat(3, 1, CV_64F, independent_term);
Mat S = Mat(1, 3, CV_64F);
for (int j = 0; j < 9; ++j) matrix[j] = (double)matrix_to_resolve[i][j];
independent_term[0] = log( abs( betas[ combination[i][0]-1 ] ) );
independent_term[1] = log( abs( betas[ combination[i][1]-1 ] ) );
independent_term[2] = log( abs( betas[ combination[i][2]-1 ] ) );
exp( Mat(M.inv() * I), S);
solutions[i][0] = S.at<double>(0);
solutions[i][1] = S.at<double>(1) * sign( betas[1] );
solutions[i][2] = abs( S.at<double>(2) );
}
}
void upnp::gauss_newton(const Mat * L_6x12, const Mat * Rho, double betas[4], double * f)
{
const int iterations_number = 50;
double a[6*4], b[6], x[4] = {0};
Mat * A = new Mat(6, 4, CV_64F, a);
Mat * B = new Mat(6, 1, CV_64F, b);
Mat * X = new Mat(4, 1, CV_64F, x);
for(int k = 0; k < iterations_number; k++)
{
compute_A_and_b_gauss_newton(L_6x12->ptr<double>(0), Rho->ptr<double>(0), betas, A, B, f[0]);
qr_solve(A, B, X);
for(int i = 0; i < 3; i++)
betas[i] += x[i];
f[0] += x[3];
}
if (f[0] < 0) f[0] = -f[0];
fu = fv = f[0];
A->release();
delete A;
B->release();
delete B;
X->release();
delete X;
}
void upnp::compute_A_and_b_gauss_newton(const double * l_6x12, const double * rho,
const double betas[4], Mat * A, Mat * b, double const f)
{
for(int i = 0; i < 6; i++) {
const double * rowL = l_6x12 + i * 12;
double * rowA = A->ptr<double>(i);
rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] + rowL[2] * betas[2] + f*f * ( 2 * rowL[6]*betas[0] + rowL[7]*betas[1] + rowL[8]*betas[2] );
rowA[1] = rowL[1] * betas[0] + 2 * rowL[3] * betas[1] + rowL[4] * betas[2] + f*f * ( rowL[7]*betas[0] + 2 * rowL[9]*betas[1] + rowL[10]*betas[2] );
rowA[2] = rowL[2] * betas[0] + rowL[4] * betas[1] + 2 * rowL[5] * betas[2] + f*f * ( rowL[8]*betas[0] + rowL[10]*betas[1] + 2 * rowL[11]*betas[2] );
rowA[3] = 2*f * ( rowL[6]*betas[0]*betas[0] + rowL[7]*betas[0]*betas[1] + rowL[8]*betas[0]*betas[2] + rowL[9]*betas[1]*betas[1] + rowL[10]*betas[1]*betas[2] + rowL[11]*betas[2]*betas[2] ) ;
*b->ptr<double>(i) = rho[i] -
(
rowL[0] * betas[0] * betas[0] +
rowL[1] * betas[0] * betas[1] +
rowL[2] * betas[0] * betas[2] +
rowL[3] * betas[1] * betas[1] +
rowL[4] * betas[1] * betas[2] +
rowL[5] * betas[2] * betas[2] +
f*f * rowL[6] * betas[0] * betas[0] +
f*f * rowL[7] * betas[0] * betas[1] +
f*f * rowL[8] * betas[0] * betas[2] +
f*f * rowL[9] * betas[1] * betas[1] +
f*f * rowL[10] * betas[1] * betas[2] +
f*f * rowL[11] * betas[2] * betas[2]
);
}
}
void upnp::compute_L_6x12(const double * ut, double * l_6x12)
{
const double * v[3];
v[0] = ut + 12 * 9;
v[1] = ut + 12 * 10;
v[2] = ut + 12 * 11;
double dv[3][6][3];
for(int i = 0; i < 3; i++) {
int a = 0, b = 1;
for(int j = 0; j < 6; j++) {
dv[i][j][0] = v[i][3 * a ] - v[i][3 * b];
dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1];
dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2];
b++;
if (b > 3) {
a++;
b = a + 1;
}
}
}
for(int i = 0; i < 6; i++) {
double * row = l_6x12 + 12 * i;
row[0] = dotXY(dv[0][i], dv[0][i]);
row[1] = 2.0f * dotXY(dv[0][i], dv[1][i]);
row[2] = dotXY(dv[1][i], dv[1][i]);
row[3] = 2.0f * dotXY(dv[0][i], dv[2][i]);
row[4] = 2.0f * dotXY(dv[1][i], dv[2][i]);
row[5] = dotXY(dv[2][i], dv[2][i]);
row[6] = dotZ(dv[0][i], dv[0][i]);
row[7] = 2.0f * dotZ(dv[0][i], dv[1][i]);
row[8] = 2.0f * dotZ(dv[0][i], dv[2][i]);
row[9] = dotZ(dv[1][i], dv[1][i]);
row[10] = 2.0f * dotZ(dv[1][i], dv[2][i]);
row[11] = dotZ(dv[2][i], dv[2][i]);
}
}
void upnp::compute_rho(double * rho)
{
rho[0] = dist2(cws[0], cws[1]);
rho[1] = dist2(cws[0], cws[2]);
rho[2] = dist2(cws[0], cws[3]);
rho[3] = dist2(cws[1], cws[2]);
rho[4] = dist2(cws[1], cws[3]);
rho[5] = dist2(cws[2], cws[3]);
}
double upnp::dist2(const double * p1, const double * p2)
{
return
(p1[0] - p2[0]) * (p1[0] - p2[0]) +
(p1[1] - p2[1]) * (p1[1] - p2[1]) +
(p1[2] - p2[2]) * (p1[2] - p2[2]);
}
double upnp::dot(const double * v1, const double * v2)
{
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
double upnp::dotXY(const double * v1, const double * v2)
{
return v1[0] * v2[0] + v1[1] * v2[1];
}
double upnp::dotZ(const double * v1, const double * v2)
{
return v1[2] * v2[2];
}
double upnp::sign(const double v)
{
return ( v < 0.0 ) ? -1.0 : ( v > 0.0 ) ? 1.0 : 0.0;
}
void upnp::qr_solve(Mat * A, Mat * b, Mat * X)
{
const int nr = A->rows;
const int nc = A->cols;
if (nr <= 0 || nc <= 0)
return;
if (max_nr != 0 && max_nr < nr)
{
delete [] A1;
delete [] A2;
}
if (max_nr < nr)
{
max_nr = nr;
A1 = new double[nr];
A2 = new double[nr];
}
double * pA = A->ptr<double>(0), * ppAkk = pA;
for(int k = 0; k < nc; k++)
{
double * ppAik1 = ppAkk, eta = fabs(*ppAik1);
for(int i = k + 1; i < nr; i++)
{
double elt = fabs(*ppAik1);
if (eta < elt) eta = elt;
ppAik1 += nc;
}
if (eta == 0)
{
A1[k] = A2[k] = 0.0;
//cerr << "God damnit, A is singular, this shouldn't happen." << endl;
return;
}
else
{
double * ppAik2 = ppAkk, sum2 = 0.0, inv_eta = 1. / eta;
for(int i = k; i < nr; i++)
{
*ppAik2 *= inv_eta;
sum2 += *ppAik2 * *ppAik2;
ppAik2 += nc;
}
double sigma = sqrt(sum2);
if (*ppAkk < 0)
sigma = -sigma;
*ppAkk += sigma;
A1[k] = sigma * *ppAkk;
A2[k] = -eta * sigma;
for(int j = k + 1; j < nc; j++)
{
double * ppAik = ppAkk, sum = 0;
for(int i = k; i < nr; i++)
{
sum += *ppAik * ppAik[j - k];
ppAik += nc;
}
double tau = sum / A1[k];
ppAik = ppAkk;
for(int i = k; i < nr; i++)
{
ppAik[j - k] -= tau * *ppAik;
ppAik += nc;
}
}
}
ppAkk += nc + 1;
}
// b <- Qt b
double * ppAjj = pA, * pb = b->ptr<double>(0);
for(int j = 0; j < nc; j++)
{
double * ppAij = ppAjj, tau = 0;
for(int i = j; i < nr; i++)
{
tau += *ppAij * pb[i];
ppAij += nc;
}
tau /= A1[j];
ppAij = ppAjj;
for(int i = j; i < nr; i++)
{
pb[i] -= tau * *ppAij;
ppAij += nc;
}
ppAjj += nc + 1;
}
// X = R-1 b
double * pX = X->ptr<double>(0);
pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
for(int i = nc - 2; i >= 0; i--)
{
double * ppAij = pA + i * nc + (i + 1), sum = 0;
for(int j = i + 1; j < nc; j++)
{
sum += *ppAij * pX[j];
ppAij++;
}
pX[i] = (pb[i] - sum) / A2[i];
}
}
#endif