306 lines
7.6 KiB
C++
306 lines
7.6 KiB
C++
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "ImfZip.h"
|
|
#include "ImfCheckedArithmetic.h"
|
|
#include "ImfNamespace.h"
|
|
#include "ImfSimd.h"
|
|
#include "Iex.h"
|
|
|
|
#include <math.h>
|
|
#include <zlib.h>
|
|
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER
|
|
|
|
Zip::Zip(size_t maxRawSize):
|
|
_maxRawSize(maxRawSize),
|
|
_tmpBuffer(0)
|
|
{
|
|
_tmpBuffer = new char[_maxRawSize];
|
|
}
|
|
|
|
Zip::Zip(size_t maxScanLineSize, size_t numScanLines):
|
|
_maxRawSize(0),
|
|
_tmpBuffer(0)
|
|
{
|
|
_maxRawSize = uiMult (maxScanLineSize, numScanLines);
|
|
_tmpBuffer = new char[_maxRawSize];
|
|
}
|
|
|
|
Zip::~Zip()
|
|
{
|
|
if (_tmpBuffer) delete[] _tmpBuffer;
|
|
}
|
|
|
|
size_t
|
|
Zip::maxRawSize()
|
|
{
|
|
return _maxRawSize;
|
|
}
|
|
|
|
size_t
|
|
Zip::maxCompressedSize()
|
|
{
|
|
return uiAdd (uiAdd (_maxRawSize,
|
|
size_t (ceil (_maxRawSize * 0.01))),
|
|
size_t (100));
|
|
}
|
|
|
|
int
|
|
Zip::compress(const char *raw, int rawSize, char *compressed)
|
|
{
|
|
//
|
|
// Reorder the pixel data.
|
|
//
|
|
|
|
{
|
|
char *t1 = _tmpBuffer;
|
|
char *t2 = _tmpBuffer + (rawSize + 1) / 2;
|
|
const char *stop = raw + rawSize;
|
|
|
|
while (true)
|
|
{
|
|
if (raw < stop)
|
|
*(t1++) = *(raw++);
|
|
else
|
|
break;
|
|
|
|
if (raw < stop)
|
|
*(t2++) = *(raw++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Predictor.
|
|
//
|
|
|
|
{
|
|
unsigned char *t = (unsigned char *) _tmpBuffer + 1;
|
|
unsigned char *stop = (unsigned char *) _tmpBuffer + rawSize;
|
|
int p = t[-1];
|
|
|
|
while (t < stop)
|
|
{
|
|
int d = int (t[0]) - p + (128 + 256);
|
|
p = t[0];
|
|
t[0] = d;
|
|
++t;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Compress the data using zlib
|
|
//
|
|
|
|
uLongf outSize = int(ceil(rawSize * 1.01)) + 100;
|
|
|
|
if (Z_OK != ::compress ((Bytef *)compressed, &outSize,
|
|
(const Bytef *) _tmpBuffer, rawSize))
|
|
{
|
|
throw IEX_NAMESPACE::BaseExc ("Data compression (zlib) failed.");
|
|
}
|
|
|
|
return outSize;
|
|
}
|
|
|
|
#ifdef IMF_HAVE_SSE4_1
|
|
|
|
static void
|
|
reconstruct_sse41(char *buf, size_t outSize)
|
|
{
|
|
static const size_t bytesPerChunk = sizeof(__m128i);
|
|
const size_t vOutSize = outSize / bytesPerChunk;
|
|
|
|
const __m128i c = _mm_set1_epi8(-128);
|
|
const __m128i shuffleMask = _mm_set1_epi8(15);
|
|
|
|
// The first element doesn't have its high bit flipped during compression,
|
|
// so it must not be flipped here. To make the SIMD loop nice and
|
|
// uniform, we pre-flip the bit so that the loop will unflip it again.
|
|
buf[0] += -128;
|
|
|
|
__m128i *vBuf = reinterpret_cast<__m128i *>(buf);
|
|
__m128i vPrev = _mm_setzero_si128();
|
|
for (size_t i=0; i<vOutSize; ++i)
|
|
{
|
|
__m128i d = _mm_add_epi8(_mm_loadu_si128(vBuf), c);
|
|
|
|
// Compute the prefix sum of elements.
|
|
d = _mm_add_epi8(d, _mm_slli_si128(d, 1));
|
|
d = _mm_add_epi8(d, _mm_slli_si128(d, 2));
|
|
d = _mm_add_epi8(d, _mm_slli_si128(d, 4));
|
|
d = _mm_add_epi8(d, _mm_slli_si128(d, 8));
|
|
d = _mm_add_epi8(d, vPrev);
|
|
|
|
_mm_storeu_si128(vBuf++, d);
|
|
|
|
// Broadcast the high byte in our result to all lanes of the prev
|
|
// value for the next iteration.
|
|
vPrev = _mm_shuffle_epi8(d, shuffleMask);
|
|
}
|
|
|
|
unsigned char prev = _mm_extract_epi8(vPrev, 15);
|
|
for (size_t i=vOutSize*bytesPerChunk; i<outSize; ++i)
|
|
{
|
|
unsigned char d = prev + buf[i] - 128;
|
|
buf[i] = d;
|
|
prev = d;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static void
|
|
reconstruct_scalar(char *buf, size_t outSize)
|
|
{
|
|
unsigned char *t = (unsigned char *) buf + 1;
|
|
unsigned char *stop = (unsigned char *) buf + outSize;
|
|
|
|
while (t < stop)
|
|
{
|
|
int d = int (t[-1]) + int (t[0]) - 128;
|
|
t[0] = d;
|
|
++t;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef IMF_HAVE_SSE2
|
|
|
|
static void
|
|
interleave_sse2(const char *source, size_t outSize, char *out)
|
|
{
|
|
static const size_t bytesPerChunk = 2*sizeof(__m128i);
|
|
|
|
const size_t vOutSize = outSize / bytesPerChunk;
|
|
|
|
const __m128i *v1 = reinterpret_cast<const __m128i *>(source);
|
|
const __m128i *v2 = reinterpret_cast<const __m128i *>(source + (outSize + 1) / 2);
|
|
__m128i *vOut = reinterpret_cast<__m128i *>(out);
|
|
|
|
for (size_t i=0; i<vOutSize; ++i) {
|
|
__m128i a = _mm_loadu_si128(v1++);
|
|
__m128i b = _mm_loadu_si128(v2++);
|
|
|
|
__m128i lo = _mm_unpacklo_epi8(a, b);
|
|
__m128i hi = _mm_unpackhi_epi8(a, b);
|
|
|
|
_mm_storeu_si128(vOut++, lo);
|
|
_mm_storeu_si128(vOut++, hi);
|
|
}
|
|
|
|
const char *t1 = reinterpret_cast<const char *>(v1);
|
|
const char *t2 = reinterpret_cast<const char *>(v2);
|
|
char *sOut = reinterpret_cast<char *>(vOut);
|
|
|
|
for (size_t i=vOutSize*bytesPerChunk; i<outSize; ++i)
|
|
{
|
|
*(sOut++) = (i%2==0) ? *(t1++) : *(t2++);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static void
|
|
interleave_scalar(const char *source, size_t outSize, char *out)
|
|
{
|
|
const char *t1 = source;
|
|
const char *t2 = source + (outSize + 1) / 2;
|
|
char *s = out;
|
|
char *const stop = s + outSize;
|
|
|
|
while (true)
|
|
{
|
|
if (s < stop)
|
|
*(s++) = *(t1++);
|
|
else
|
|
break;
|
|
|
|
if (s < stop)
|
|
*(s++) = *(t2++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
int
|
|
Zip::uncompress(const char *compressed, int compressedSize,
|
|
char *raw)
|
|
{
|
|
//
|
|
// Decompress the data using zlib
|
|
//
|
|
|
|
uLongf outSize = _maxRawSize;
|
|
|
|
if (Z_OK != ::uncompress ((Bytef *)_tmpBuffer, &outSize,
|
|
(const Bytef *) compressed, compressedSize))
|
|
{
|
|
throw IEX_NAMESPACE::InputExc ("Data decompression (zlib) failed.");
|
|
}
|
|
|
|
if (outSize == 0)
|
|
{
|
|
return outSize;
|
|
}
|
|
|
|
//
|
|
// Predictor.
|
|
//
|
|
#ifdef IMF_HAVE_SSE4_1
|
|
reconstruct_sse41(_tmpBuffer, outSize);
|
|
#else
|
|
reconstruct_scalar(_tmpBuffer, outSize);
|
|
#endif
|
|
|
|
//
|
|
// Reorder the pixel data.
|
|
//
|
|
#ifdef IMF_HAVE_SSE2
|
|
interleave_sse2(_tmpBuffer, outSize, raw);
|
|
#else
|
|
interleave_scalar(_tmpBuffer, outSize, raw);
|
|
#endif
|
|
|
|
return outSize;
|
|
}
|
|
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT
|