OpenCV_4.2.0/opencv-4.2.0/3rdparty/openexr/IlmImf/ImfXdr.h

928 lines
19 KiB
C++

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#ifndef INCLUDED_IMF_XDR_H
#define INCLUDED_IMF_XDR_H
//----------------------------------------------------------------------------
//
// Xdr -- routines to convert data between the machine's native
// format and a machine-independent external data representation:
//
// write<R> (T &o, S v); converts a value, v, of type S
// into a machine-independent
// representation and stores the
// result in an output buffer, o.
//
// read<R> (T &i, S &v); reads the machine-independent
// representation of a value of type
// S from input buffer i, converts
// the value into the machine's native
// representation, and stores the result
// in v.
//
// size<S>(); returns the size, in bytes, of the
// machine-independent representation
// of an object of type S.
//
// The write() and read() routines are templates; data can be written
// to and read from any output or input buffer type T for which a helper
// class, R, exits. Class R must define a method to store a char array
// in a T, and a method to read a char array from a T:
//
// struct R
// {
// static void
// writeChars (T &o, const char c[/*n*/], int n)
// {
// ... // Write c[0], c[1] ... c[n-1] to output buffer o.
// }
//
// static void
// readChars (T &i, char c[/*n*/], int n)
// {
// ... // Read n characters from input buffer i
// // and copy them to c[0], c[1] ... c[n-1].
// }
// };
//
// Example - writing to and reading from iostreams:
//
// struct CharStreamIO
// {
// static void
// writeChars (ostream &os, const char c[], int n)
// {
// os.write (c, n);
// }
//
// static void
// readChars (istream &is, char c[], int n)
// {
// is.read (c, n);
// }
// };
//
// ...
//
// Xdr::write<CharStreamIO> (os, 3);
// Xdr::write<CharStreamIO> (os, 5.0);
//
//----------------------------------------------------------------------------
#include "ImfInt64.h"
#include "IexMathExc.h"
#include "half.h"
#include <limits.h>
#include "ImfNamespace.h"
OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_ENTER
namespace Xdr {
//-------------------------------
// Write data to an output stream
//-------------------------------
template <class S, class T>
void
write (T &out, bool v);
template <class S, class T>
void
write (T &out, char v);
template <class S, class T>
void
write (T &out, signed char v);
template <class S, class T>
void
write (T &out, unsigned char v);
template <class S, class T>
void
write (T &out, signed short v);
template <class S, class T>
void
write (T &out, unsigned short v);
template <class S, class T>
void
write (T &out, signed int v);
template <class S, class T>
void
write (T &out, unsigned int v);
template <class S, class T>
void
write (T &out, signed long v);
template <class S, class T>
void
write (T &out, unsigned long v);
#if ULONG_MAX != 18446744073709551615LU
template <class S, class T>
void
write (T &out, Int64 v);
#endif
template <class S, class T>
void
write (T &out, float v);
template <class S, class T>
void
write (T &out, double v);
template <class S, class T>
void
write (T &out, half v);
template <class S, class T>
void
write (T &out, const char v[/*n*/], int n); // fixed-size char array
template <class S, class T>
void
write (T &out, const char v[]); // zero-terminated string
//-----------------------------------------
// Append padding bytes to an output stream
//-----------------------------------------
template <class S, class T>
void
pad (T &out, int n); // write n padding bytes
//-------------------------------
// Read data from an input stream
//-------------------------------
template <class S, class T>
void
read (T &in, bool &v);
template <class S, class T>
void
read (T &in, char &v);
template <class S, class T>
void
read (T &in, signed char &v);
template <class S, class T>
void
read (T &in, unsigned char &v);
template <class S, class T>
void
read (T &in, signed short &v);
template <class S, class T>
void
read (T &in, unsigned short &v);
template <class S, class T>
void
read (T &in, signed int &v);
template <class S, class T>
void
read (T &in, unsigned int &v);
template <class S, class T>
void
read (T &in, signed long &v);
template <class S, class T>
void
read (T &in, unsigned long &v);
#if ULONG_MAX != 18446744073709551615LU
template <class S, class T>
void
read (T &in, Int64 &v);
#endif
template <class S, class T>
void
read (T &in, float &v);
template <class S, class T>
void
read (T &in, double &v);
template <class S, class T>
void
read (T &in, half &v);
template <class S, class T>
void
read (T &in, char v[/*n*/], int n); // fixed-size char array
template <class S, class T>
void
read (T &in, int n, char v[/*n*/]); // zero-terminated string
//-------------------------------------------
// Skip over padding bytes in an input stream
//-------------------------------------------
template <class S, class T>
void
skip (T &in, int n); // skip n padding bytes
//--------------------------------------
// Size of the machine-independent
// representation of an object of type S
//--------------------------------------
template <class S>
int
size ();
//---------------
// Implementation
//---------------
template <class S, class T>
inline void
writeSignedChars (T &out, const signed char c[], int n)
{
S::writeChars (out, (const char *) c, n);
}
template <class S, class T>
inline void
writeUnsignedChars (T &out, const unsigned char c[], int n)
{
S::writeChars (out, (const char *) c, n);
}
template <class S, class T>
inline void
readSignedChars (T &in, signed char c[], int n)
{
S::readChars (in, (char *) c, n);
}
template <class S, class T>
inline void
readUnsignedChars (T &in, unsigned char c[], int n)
{
S::readChars (in, (char *) c, n);
}
template <class S, class T>
inline void
write (T &out, bool v)
{
char c = !!v;
S::writeChars (out, &c, 1);
}
template <class S, class T>
inline void
write (T &out, char v)
{
S::writeChars (out, &v, 1);
}
template <class S, class T>
inline void
write (T &out, signed char v)
{
writeSignedChars<S> (out, &v, 1);
}
template <class S, class T>
inline void
write (T &out, unsigned char v)
{
writeUnsignedChars<S> (out, &v, 1);
}
template <class S, class T>
void
write (T &out, signed short v)
{
signed char b[2];
b[0] = (signed char) (v);
b[1] = (signed char) (v >> 8);
writeSignedChars<S> (out, b, 2);
}
template <class S, class T>
void
write (T &out, unsigned short v)
{
unsigned char b[2];
b[0] = (unsigned char) (v);
b[1] = (unsigned char) (v >> 8);
writeUnsignedChars<S> (out, b, 2);
}
template <class S, class T>
void
write (T &out, signed int v)
{
signed char b[4];
b[0] = (signed char) (v);
b[1] = (signed char) (v >> 8);
b[2] = (signed char) (v >> 16);
b[3] = (signed char) (v >> 24);
writeSignedChars<S> (out, b, 4);
}
template <class S, class T>
void
write (T &out, unsigned int v)
{
unsigned char b[4];
b[0] = (unsigned char) (v);
b[1] = (unsigned char) (v >> 8);
b[2] = (unsigned char) (v >> 16);
b[3] = (unsigned char) (v >> 24);
writeUnsignedChars<S> (out, b, 4);
}
template <class S, class T>
void
write (T &out, signed long v)
{
signed char b[8];
b[0] = (signed char) (v);
b[1] = (signed char) (v >> 8);
b[2] = (signed char) (v >> 16);
b[3] = (signed char) (v >> 24);
#if LONG_MAX == 2147483647
if (v >= 0)
{
b[4] = 0;
b[5] = 0;
b[6] = 0;
b[7] = 0;
}
else
{
b[4] = ~0;
b[5] = ~0;
b[6] = ~0;
b[7] = ~0;
}
#elif LONG_MAX == 9223372036854775807L
b[4] = (signed char) (v >> 32);
b[5] = (signed char) (v >> 40);
b[6] = (signed char) (v >> 48);
b[7] = (signed char) (v >> 56);
#else
#error write<T> (T &out, signed long v) not implemented
#endif
writeSignedChars<S> (out, b, 8);
}
template <class S, class T>
void
write (T &out, unsigned long v)
{
unsigned char b[8];
b[0] = (unsigned char) (v);
b[1] = (unsigned char) (v >> 8);
b[2] = (unsigned char) (v >> 16);
b[3] = (unsigned char) (v >> 24);
#if ULONG_MAX == 4294967295U
b[4] = 0;
b[5] = 0;
b[6] = 0;
b[7] = 0;
#elif ULONG_MAX == 18446744073709551615LU
b[4] = (unsigned char) (v >> 32);
b[5] = (unsigned char) (v >> 40);
b[6] = (unsigned char) (v >> 48);
b[7] = (unsigned char) (v >> 56);
#else
#error write<T> (T &out, unsigned long v) not implemented
#endif
writeUnsignedChars<S> (out, b, 8);
}
#if ULONG_MAX != 18446744073709551615LU
template <class S, class T>
void
write (T &out, Int64 v)
{
unsigned char b[8];
b[0] = (unsigned char) (v);
b[1] = (unsigned char) (v >> 8);
b[2] = (unsigned char) (v >> 16);
b[3] = (unsigned char) (v >> 24);
b[4] = (unsigned char) (v >> 32);
b[5] = (unsigned char) (v >> 40);
b[6] = (unsigned char) (v >> 48);
b[7] = (unsigned char) (v >> 56);
writeUnsignedChars<S> (out, b, 8);
}
#endif
template <class S, class T>
void
write (T &out, float v)
{
union {unsigned int i; float f;} u;
u.f = v;
unsigned char b[4];
b[0] = (unsigned char) (u.i);
b[1] = (unsigned char) (u.i >> 8);
b[2] = (unsigned char) (u.i >> 16);
b[3] = (unsigned char) (u.i >> 24);
writeUnsignedChars<S> (out, b, 4);
}
template <class S, class T>
void
write (T &out, double v)
{
union {Int64 i; double d;} u;
u.d = v;
unsigned char b[8];
b[0] = (unsigned char) (u.i);
b[1] = (unsigned char) (u.i >> 8);
b[2] = (unsigned char) (u.i >> 16);
b[3] = (unsigned char) (u.i >> 24);
b[4] = (unsigned char) (u.i >> 32);
b[5] = (unsigned char) (u.i >> 40);
b[6] = (unsigned char) (u.i >> 48);
b[7] = (unsigned char) (u.i >> 56);
writeUnsignedChars<S> (out, b, 8);
}
template <class S, class T>
inline void
write (T &out, half v)
{
unsigned char b[2];
b[0] = (unsigned char) (v.bits());
b[1] = (unsigned char) (v.bits() >> 8);
writeUnsignedChars<S> (out, b, 2);
}
template <class S, class T>
inline void
write (T &out, const char v[], int n) // fixed-size char array
{
S::writeChars (out, v, n);
}
template <class S, class T>
void
write (T &out, const char v[]) // zero-terminated string
{
while (*v)
{
S::writeChars (out, v, 1);
++v;
}
S::writeChars (out, v, 1);
}
template <class S, class T>
void
pad (T &out, int n) // add n padding bytes
{
for (int i = 0; i < n; i++)
{
const char c = 0;
S::writeChars (out, &c, 1);
}
}
template <class S, class T>
inline void
read (T &in, bool &v)
{
char c;
S::readChars (in, &c, 1);
v = !!c;
}
template <class S, class T>
inline void
read (T &in, char &v)
{
S::readChars (in, &v, 1);
}
template <class S, class T>
inline void
read (T &in, signed char &v)
{
readSignedChars<S> (in, &v, 1);
}
template <class S, class T>
inline void
read (T &in, unsigned char &v)
{
readUnsignedChars<S> (in, &v, 1);
}
template <class S, class T>
void
read (T &in, signed short &v)
{
signed char b[2];
readSignedChars<S> (in, b, 2);
v = (b[0] & 0x00ff) |
(b[1] << 8);
}
template <class S, class T>
void
read (T &in, unsigned short &v)
{
unsigned char b[2];
readUnsignedChars<S> (in, b, 2);
v = (b[0] & 0x00ff) |
(b[1] << 8);
}
template <class S, class T>
void
read (T &in, signed int &v)
{
signed char b[4];
readSignedChars<S> (in, b, 4);
v = (b[0] & 0x000000ff) |
((b[1] << 8) & 0x0000ff00) |
((b[2] << 16) & 0x00ff0000) |
(b[3] << 24);
}
template <class S, class T>
void
read (T &in, unsigned int &v)
{
unsigned char b[4];
readUnsignedChars<S> (in, b, 4);
v = (b[0] & 0x000000ff) |
((b[1] << 8) & 0x0000ff00) |
((b[2] << 16) & 0x00ff0000) |
(b[3] << 24);
}
template <class S, class T>
void
read (T &in, signed long &v)
{
signed char b[8];
readSignedChars<S> (in, b, 8);
#if LONG_MAX == 2147483647
v = (b[0] & 0x000000ff) |
((b[1] << 8) & 0x0000ff00) |
((b[2] << 16) & 0x00ff0000) |
(b[3] << 24);
if (( b[4] || b[5] || b[6] || b[7]) &&
(~b[4] || ~b[5] || ~b[6] || ~b[7]))
{
throw IEX_NAMESPACE::OverflowExc ("Long int overflow - read a large "
"64-bit integer in a 32-bit process.");
}
#elif LONG_MAX == 9223372036854775807L
v = ((long) b[0] & 0x00000000000000ff) |
(((long) b[1] << 8) & 0x000000000000ff00) |
(((long) b[2] << 16) & 0x0000000000ff0000) |
(((long) b[3] << 24) & 0x00000000ff000000) |
(((long) b[4] << 32) & 0x000000ff00000000) |
(((long) b[5] << 40) & 0x0000ff0000000000) |
(((long) b[6] << 48) & 0x00ff000000000000) |
((long) b[7] << 56);
#else
#error read<T> (T &in, signed long &v) not implemented
#endif
}
template <class S, class T>
void
read (T &in, unsigned long &v)
{
unsigned char b[8];
readUnsignedChars<S> (in, b, 8);
#if ULONG_MAX == 4294967295U
v = (b[0] & 0x000000ff) |
((b[1] << 8) & 0x0000ff00) |
((b[2] << 16) & 0x00ff0000) |
(b[3] << 24);
if (b[4] || b[5] || b[6] || b[7])
{
throw IEX_NAMESPACE::OverflowExc ("Long int overflow - read a large "
"64-bit integer in a 32-bit process.");
}
#elif ULONG_MAX == 18446744073709551615LU
v = ((unsigned long) b[0] & 0x00000000000000ff) |
(((unsigned long) b[1] << 8) & 0x000000000000ff00) |
(((unsigned long) b[2] << 16) & 0x0000000000ff0000) |
(((unsigned long) b[3] << 24) & 0x00000000ff000000) |
(((unsigned long) b[4] << 32) & 0x000000ff00000000) |
(((unsigned long) b[5] << 40) & 0x0000ff0000000000) |
(((unsigned long) b[6] << 48) & 0x00ff000000000000) |
((unsigned long) b[7] << 56);
#else
#error read<T> (T &in, unsigned long &v) not implemented
#endif
}
#if ULONG_MAX != 18446744073709551615LU
template <class S, class T>
void
read (T &in, Int64 &v)
{
unsigned char b[8];
readUnsignedChars<S> (in, b, 8);
v = ((Int64) b[0] & 0x00000000000000ffLL) |
(((Int64) b[1] << 8) & 0x000000000000ff00LL) |
(((Int64) b[2] << 16) & 0x0000000000ff0000LL) |
(((Int64) b[3] << 24) & 0x00000000ff000000LL) |
(((Int64) b[4] << 32) & 0x000000ff00000000LL) |
(((Int64) b[5] << 40) & 0x0000ff0000000000LL) |
(((Int64) b[6] << 48) & 0x00ff000000000000LL) |
((Int64) b[7] << 56);
}
#endif
template <class S, class T>
void
read (T &in, float &v)
{
unsigned char b[4];
readUnsignedChars<S> (in, b, 4);
union {unsigned int i; float f;} u;
u.i = (b[0] & 0x000000ff) |
((b[1] << 8) & 0x0000ff00) |
((b[2] << 16) & 0x00ff0000) |
(b[3] << 24);
v = u.f;
}
template <class S, class T>
void
read (T &in, double &v)
{
unsigned char b[8];
readUnsignedChars<S> (in, b, 8);
union {Int64 i; double d;} u;
u.i = ((Int64) b[0] & 0x00000000000000ffULL) |
(((Int64) b[1] << 8) & 0x000000000000ff00ULL) |
(((Int64) b[2] << 16) & 0x0000000000ff0000ULL) |
(((Int64) b[3] << 24) & 0x00000000ff000000ULL) |
(((Int64) b[4] << 32) & 0x000000ff00000000ULL) |
(((Int64) b[5] << 40) & 0x0000ff0000000000ULL) |
(((Int64) b[6] << 48) & 0x00ff000000000000ULL) |
((Int64) b[7] << 56);
v = u.d;
}
template <class S, class T>
inline void
read (T &in, half &v)
{
unsigned char b[2];
readUnsignedChars<S> (in, b, 2);
v.setBits ((b[0] & 0x00ff) | (b[1] << 8));
}
template <class S, class T>
inline void
read (T &in, char v[], int n) // fixed-size char array
{
S::readChars (in, v, n);
}
template <class S, class T>
void
read (T &in, int n, char v[]) // zero-terminated string
{
while (n >= 0)
{
S::readChars (in, v, 1);
if (*v == 0)
break;
--n;
++v;
}
}
template <class S, class T>
void
skip (T &in, int n) // skip n padding bytes
{
char c[1024];
while (n >= (int) sizeof (c))
{
if (!S::readChars (in, c, sizeof (c)))
return;
n -= sizeof (c);
}
if (n >= 1)
S::readChars (in, c, n);
}
template <> inline int size <bool> () {return 1;}
template <> inline int size <char> () {return 1;}
template <> inline int size <signed char> () {return 1;}
template <> inline int size <unsigned char> () {return 1;}
template <> inline int size <signed short> () {return 2;}
template <> inline int size <unsigned short> () {return 2;}
template <> inline int size <signed int> () {return 4;}
template <> inline int size <unsigned int> () {return 4;}
template <> inline int size <signed long> () {return 8;}
template <> inline int size <unsigned long> () {return 8;}
template <> inline int size <unsigned long long> () {return 8;}
template <> inline int size <float> () {return 4;}
template <> inline int size <double> () {return 8;}
template <> inline int size <half> () {return 2;}
} // namespace Xdr
OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_EXIT
#if defined (OPENEXR_IMF_INTERNAL_NAMESPACE_AUTO_EXPOSE)
namespace Imf{using namespace OPENEXR_IMF_INTERNAL_NAMESPACE;}
#endif
#endif