3440 lines
102 KiB
C++
3440 lines
102 KiB
C++
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2009-2014 DreamWorks Animation LLC.
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of DreamWorks Animation nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
//---------------------------------------------------
|
|
//
|
|
// class DwaCompressor -- Store lossy RGB data by quantizing
|
|
// DCT components.
|
|
//
|
|
// First, we try and figure out what compression strategy to take
|
|
// based in channel name. For RGB channels, we want a lossy method
|
|
// described below. But, if we have alpha, we should do something
|
|
// different (and probably using RLE). If we have depth, or velocity,
|
|
// or something else, just fall back to ZIP. The rules for deciding
|
|
// which strategy to use are setup in initializeDefaultChannelRules().
|
|
// When writing a file, the relevant rules needed to decode are written
|
|
// into the start of the data block, making a self-contained file.
|
|
// If initializeDefaultChannelRules() doesn't quite suite your naming
|
|
// conventions, you can adjust the rules without breaking decoder
|
|
// compatability.
|
|
//
|
|
// If we're going to lossy compress R, G, or B channels, it's easier
|
|
// to toss bits in a more perceptual uniform space. One could argue
|
|
// at length as to what constitutes perceptually uniform, expecially
|
|
// when storing either scene/input/focal plane referred and output referred
|
|
// data.
|
|
//
|
|
// We'll compromise. For values <= 1, we use a traditional power function
|
|
// (without any of that straight-line business at the bottom). For values > 1,
|
|
// we want something more like a log function, since power functions blow
|
|
// up. At 1, we want a smooth blend between the functions. So, we use a
|
|
// piecewise function that does just that - see dwaLookups.cpp for
|
|
// a little more detail.
|
|
//
|
|
// Also, if we find that we have R, G, and B channels from the same layer,
|
|
// we can get a bit more compression efficiency by transforming to a Y'CbCr
|
|
// space. We use the 709 transform, but with Cb,Cr = 0 for an input of
|
|
// (0, 0, 0), instead of the traditional Cb,Cr = .5. Shifting the zero point
|
|
// makes no sense with large range data. Transforms are done to from
|
|
// the perceptual space data, not the linear-light space data (R'G'B' ->
|
|
// (Y'CbCr, not RGB -> YCbCr).
|
|
//
|
|
// Next, we forward DCT the data. This is done with a floating
|
|
// point DCT, as we don't really have control over the src range. The
|
|
// resulting values are dropped to half-float precision.
|
|
//
|
|
// Now, we need to quantize. Quantization departs from the usual way
|
|
// of dividing and rounding. Instead, we start with some floating
|
|
// point "base-error" value. From this, we can derive quantization
|
|
// error for each DCT component. Take the standard JPEG quantization
|
|
// tables and normalize them by the smallest value. Then, multiply
|
|
// the normalized quant tables by our base-error value. This gives
|
|
// a range of errors for each DCT component.
|
|
//
|
|
// For each DCT component, we want to find a quantized value that
|
|
// is within +- the per-component error. Pick the quantized value
|
|
// that has the fewest bits set in its' binary representation.
|
|
// Brute-forcing the search would make for extremly inefficient
|
|
// compression. Fortunatly, we can precompute a table to assist
|
|
// with this search.
|
|
//
|
|
// For each 16-bit float value, there are at most 15 other values with
|
|
// fewer bits set. We can precompute these values in a compact form, since
|
|
// many source values have far fewer that 15 possible quantized values.
|
|
// Now, instead of searching the entire range +- the component error,
|
|
// we can just search at most 15 quantization candidates. The search can
|
|
// be accelerated a bit more by sorting the candidates by the
|
|
// number of bits set, in increasing order. Then, the search can stop
|
|
// once a candidate is found w/i the per-component quantization
|
|
// error range.
|
|
//
|
|
// The quantization strategy has the side-benefit that there is no
|
|
// de-quantization step upon decode, so we don't bother recording
|
|
// the quantization table.
|
|
//
|
|
// Ok. So we now have quantized values. Time for entropy coding. We
|
|
// can use either static Huffman or zlib/DEFLATE. The static Huffman
|
|
// is more efficient at compacting data, but can have a greater
|
|
// overhead, especially for smaller tile/strip sizes.
|
|
//
|
|
// There is some additional fun, like ZIP compressing the DC components
|
|
// instead of Huffman/zlib, which helps make things slightly smaller.
|
|
//
|
|
// Compression level is controlled by setting an int/float/double attribute
|
|
// on the header named "dwaCompressionLevel". This is a thinly veiled name for
|
|
// the "base-error" value mentioned above. The "base-error" is just
|
|
// dwaCompressionLevel / 100000. The default value of 45.0 is generally
|
|
// pretty good at generating "visually lossless" values at reasonable
|
|
// data rates. Setting dwaCompressionLevel to 0 should result in no additional
|
|
// quantization at the quantization stage (though there may be
|
|
// quantization in practice at the CSC/DCT steps). But if you really
|
|
// want lossless compression, there are pleanty of other choices
|
|
// of compressors ;)
|
|
//
|
|
// When dealing with FLOAT source buffers, we first quantize the source
|
|
// to HALF and continue down as we would for HALF source.
|
|
//
|
|
//---------------------------------------------------
|
|
|
|
|
|
#include "ImfDwaCompressor.h"
|
|
#include "ImfDwaCompressorSimd.h"
|
|
|
|
#include "ImfChannelList.h"
|
|
#include "ImfStandardAttributes.h"
|
|
#include "ImfHeader.h"
|
|
#include "ImfHuf.h"
|
|
#include "ImfInt64.h"
|
|
#include "ImfIntAttribute.h"
|
|
#include "ImfIO.h"
|
|
#include "ImfMisc.h"
|
|
#include "ImfNamespace.h"
|
|
#include "ImfRle.h"
|
|
#include "ImfSimd.h"
|
|
#include "ImfSystemSpecific.h"
|
|
#include "ImfXdr.h"
|
|
#include "ImfZip.h"
|
|
|
|
#include "ImathFun.h"
|
|
#include "ImathBox.h"
|
|
#include "ImathVec.h"
|
|
#include "half.h"
|
|
#include "halfLimits.h"
|
|
|
|
#include "dwaLookups.h"
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <cctype>
|
|
#include <cassert>
|
|
#include <algorithm>
|
|
|
|
// Windows specific addition to prevent the indirect import of the redefined min/max macros
|
|
#if defined _WIN32 || defined _WIN64
|
|
#ifdef NOMINMAX
|
|
#undef NOMINMAX
|
|
#endif
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <zlib.h>
|
|
|
|
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_ENTER
|
|
|
|
|
|
namespace {
|
|
|
|
//
|
|
// Function pointer to dispatch to an approprate
|
|
// convertFloatToHalf64_* impl, based on runtime cpu checking.
|
|
// Should be initialized in DwaCompressor::initializeFuncs()
|
|
//
|
|
|
|
void (*convertFloatToHalf64)(unsigned short*, float*) =
|
|
convertFloatToHalf64_scalar;
|
|
|
|
//
|
|
// Function pointer for dispatching a fromHalfZigZag_ impl
|
|
//
|
|
|
|
void (*fromHalfZigZag)(unsigned short*, float*) =
|
|
fromHalfZigZag_scalar;
|
|
|
|
//
|
|
// Dispatch the inverse DCT on an 8x8 block, where the last
|
|
// n rows can be all zeros. The n=0 case converts the full block.
|
|
//
|
|
void (*dctInverse8x8_0)(float*) = dctInverse8x8_scalar<0>;
|
|
void (*dctInverse8x8_1)(float*) = dctInverse8x8_scalar<1>;
|
|
void (*dctInverse8x8_2)(float*) = dctInverse8x8_scalar<2>;
|
|
void (*dctInverse8x8_3)(float*) = dctInverse8x8_scalar<3>;
|
|
void (*dctInverse8x8_4)(float*) = dctInverse8x8_scalar<4>;
|
|
void (*dctInverse8x8_5)(float*) = dctInverse8x8_scalar<5>;
|
|
void (*dctInverse8x8_6)(float*) = dctInverse8x8_scalar<6>;
|
|
void (*dctInverse8x8_7)(float*) = dctInverse8x8_scalar<7>;
|
|
|
|
} // namespace
|
|
|
|
|
|
struct DwaCompressor::ChannelData
|
|
{
|
|
std::string name;
|
|
CompressorScheme compression;
|
|
int xSampling;
|
|
int ySampling;
|
|
PixelType type;
|
|
bool pLinear;
|
|
|
|
int width;
|
|
int height;
|
|
|
|
//
|
|
// Incoming and outgoing data is scanline interleaved, and it's much
|
|
// easier to operate on contiguous data. Assuming the planare unc
|
|
// buffer is to hold RLE data, we need to rearrange to make bytes
|
|
// adjacent.
|
|
//
|
|
|
|
char *planarUncBuffer;
|
|
char *planarUncBufferEnd;
|
|
|
|
char *planarUncRle[4];
|
|
char *planarUncRleEnd[4];
|
|
|
|
PixelType planarUncType;
|
|
int planarUncSize;
|
|
};
|
|
|
|
|
|
struct DwaCompressor::CscChannelSet
|
|
{
|
|
int idx[3];
|
|
};
|
|
|
|
|
|
struct DwaCompressor::Classifier
|
|
{
|
|
Classifier (std::string suffix,
|
|
CompressorScheme scheme,
|
|
PixelType type,
|
|
int cscIdx,
|
|
bool caseInsensitive):
|
|
_suffix(suffix),
|
|
_scheme(scheme),
|
|
_type(type),
|
|
_cscIdx(cscIdx),
|
|
_caseInsensitive(caseInsensitive)
|
|
{
|
|
if (caseInsensitive)
|
|
std::transform(_suffix.begin(), _suffix.end(), _suffix.begin(), tolower);
|
|
}
|
|
|
|
Classifier (const char *&ptr, int size)
|
|
{
|
|
if (size <= 0)
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
" (truncated rule).");
|
|
|
|
{
|
|
char suffix[Name::SIZE];
|
|
memset (suffix, 0, Name::SIZE);
|
|
Xdr::read<CharPtrIO> (ptr, std::min(size, Name::SIZE-1), suffix);
|
|
_suffix = std::string(suffix);
|
|
}
|
|
|
|
if (size < _suffix.length() + 1 + 2*Xdr::size<char>())
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
" (truncated rule).");
|
|
|
|
char value;
|
|
Xdr::read<CharPtrIO> (ptr, value);
|
|
|
|
_cscIdx = (int)(value >> 4) - 1;
|
|
if (_cscIdx < -1 || _cscIdx >= 3)
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
" (corrupt cscIdx rule).");
|
|
|
|
_scheme = (CompressorScheme)((value >> 2) & 3);
|
|
if (_scheme < 0 || _scheme >= NUM_COMPRESSOR_SCHEMES)
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
" (corrupt scheme rule).");
|
|
|
|
_caseInsensitive = (value & 1 ? true : false);
|
|
|
|
Xdr::read<CharPtrIO> (ptr, value);
|
|
if (value < 0 || value >= NUM_PIXELTYPES)
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
" (corrupt rule).");
|
|
_type = (PixelType)value;
|
|
}
|
|
|
|
bool match (const std::string &suffix, const PixelType type) const
|
|
{
|
|
if (_type != type) return false;
|
|
|
|
if (_caseInsensitive)
|
|
{
|
|
std::string tmp(suffix);
|
|
std::transform(tmp.begin(), tmp.end(), tmp.begin(), tolower);
|
|
return tmp == _suffix;
|
|
}
|
|
|
|
return suffix == _suffix;
|
|
}
|
|
|
|
size_t size () const
|
|
{
|
|
// string length + \0
|
|
size_t sizeBytes = _suffix.length() + 1;
|
|
|
|
// 1 byte for scheme / cscIdx / caseInsensitive, and 1 byte for type
|
|
sizeBytes += 2 * Xdr::size<char>();
|
|
|
|
return sizeBytes;
|
|
}
|
|
|
|
void write (char *&ptr) const
|
|
{
|
|
Xdr::write<CharPtrIO> (ptr, _suffix.c_str());
|
|
|
|
// Encode _cscIdx (-1-3) in the upper 4 bits,
|
|
// _scheme (0-2) in the next 2 bits
|
|
// _caseInsen in the bottom bit
|
|
unsigned char value = 0;
|
|
value |= ((unsigned char)(_cscIdx+1) & 15) << 4;
|
|
value |= ((unsigned char)_scheme & 3) << 2;
|
|
value |= (unsigned char)_caseInsensitive & 1;
|
|
|
|
Xdr::write<CharPtrIO> (ptr, value);
|
|
Xdr::write<CharPtrIO> (ptr, (unsigned char)_type);
|
|
}
|
|
|
|
std::string _suffix;
|
|
CompressorScheme _scheme;
|
|
PixelType _type;
|
|
int _cscIdx;
|
|
bool _caseInsensitive;
|
|
};
|
|
|
|
|
|
//
|
|
// Base class for the LOSSY_DCT decoder classes
|
|
//
|
|
|
|
class DwaCompressor::LossyDctDecoderBase
|
|
{
|
|
public:
|
|
|
|
LossyDctDecoderBase
|
|
(char *packedAc,
|
|
char *packedDc,
|
|
const unsigned short *toLinear,
|
|
int width,
|
|
int height);
|
|
|
|
virtual ~LossyDctDecoderBase ();
|
|
|
|
void execute();
|
|
|
|
//
|
|
// These return number of items, not bytes. Each item
|
|
// is an unsigned short
|
|
//
|
|
|
|
int numAcValuesEncoded() const { return _packedAcCount; }
|
|
int numDcValuesEncoded() const { return _packedDcCount; }
|
|
|
|
protected:
|
|
|
|
//
|
|
// Un-RLE the packed AC components into
|
|
// a half buffer. The half block should
|
|
// be the full 8x8 block (in zig-zag order
|
|
// still), not the first AC component.
|
|
//
|
|
// currAcComp is advanced as bytes are decoded.
|
|
//
|
|
// This returns the index of the last non-zero
|
|
// value in the buffer - with the index into zig zag
|
|
// order data. If we return 0, we have DC only data.
|
|
//
|
|
|
|
int unRleAc (unsigned short *&currAcComp,
|
|
unsigned short *halfZigBlock);
|
|
|
|
|
|
//
|
|
// if NATIVE and XDR are really the same values, we can
|
|
// skip some processing and speed things along
|
|
//
|
|
|
|
bool _isNativeXdr;
|
|
|
|
|
|
//
|
|
// Counts of how many items have been packed into the
|
|
// AC and DC buffers
|
|
//
|
|
|
|
int _packedAcCount;
|
|
int _packedDcCount;
|
|
|
|
|
|
//
|
|
// AC and DC buffers to pack
|
|
//
|
|
|
|
char *_packedAc;
|
|
char *_packedDc;
|
|
|
|
|
|
//
|
|
// half -> half LUT to transform from nonlinear to linear
|
|
//
|
|
|
|
const unsigned short *_toLinear;
|
|
|
|
|
|
//
|
|
// image dimensions
|
|
//
|
|
|
|
int _width;
|
|
int _height;
|
|
|
|
|
|
//
|
|
// Pointers to the start of each scanlines, to be filled on decode
|
|
// Generally, these will be filled by the subclasses.
|
|
//
|
|
|
|
std::vector< std::vector<char *> > _rowPtrs;
|
|
|
|
|
|
//
|
|
// The type of each data that _rowPtrs[i] is referring. Layout
|
|
// is in the same order as _rowPtrs[].
|
|
//
|
|
|
|
std::vector<PixelType> _type;
|
|
std::vector<SimdAlignedBuffer64f> _dctData;
|
|
};
|
|
|
|
|
|
//
|
|
// Used to decode a single channel of LOSSY_DCT data.
|
|
//
|
|
|
|
class DwaCompressor::LossyDctDecoder: public LossyDctDecoderBase
|
|
{
|
|
public:
|
|
|
|
//
|
|
// toLinear is a half-float LUT to convert the encoded values
|
|
// back to linear light. If you want to skip this step, pass
|
|
// in NULL here.
|
|
//
|
|
|
|
LossyDctDecoder
|
|
(std::vector<char *> &rowPtrs,
|
|
char *packedAc,
|
|
char *packedDc,
|
|
const unsigned short *toLinear,
|
|
int width,
|
|
int height,
|
|
PixelType type)
|
|
:
|
|
LossyDctDecoderBase(packedAc, packedDc, toLinear, width, height)
|
|
{
|
|
_rowPtrs.push_back(rowPtrs);
|
|
_type.push_back(type);
|
|
}
|
|
|
|
virtual ~LossyDctDecoder () {}
|
|
};
|
|
|
|
|
|
//
|
|
// Used to decode 3 channels of LOSSY_DCT data that
|
|
// are grouped together and color space converted.
|
|
//
|
|
|
|
class DwaCompressor::LossyDctDecoderCsc: public LossyDctDecoderBase
|
|
{
|
|
public:
|
|
|
|
//
|
|
// toLinear is a half-float LUT to convert the encoded values
|
|
// back to linear light. If you want to skip this step, pass
|
|
// in NULL here.
|
|
//
|
|
|
|
LossyDctDecoderCsc
|
|
(std::vector<char *> &rowPtrsR,
|
|
std::vector<char *> &rowPtrsG,
|
|
std::vector<char *> &rowPtrsB,
|
|
char *packedAc,
|
|
char *packedDc,
|
|
const unsigned short *toLinear,
|
|
int width,
|
|
int height,
|
|
PixelType typeR,
|
|
PixelType typeG,
|
|
PixelType typeB)
|
|
:
|
|
LossyDctDecoderBase(packedAc, packedDc, toLinear, width, height)
|
|
{
|
|
_rowPtrs.push_back(rowPtrsR);
|
|
_rowPtrs.push_back(rowPtrsG);
|
|
_rowPtrs.push_back(rowPtrsB);
|
|
_type.push_back(typeR);
|
|
_type.push_back(typeG);
|
|
_type.push_back(typeB);
|
|
}
|
|
|
|
virtual ~LossyDctDecoderCsc () {}
|
|
};
|
|
|
|
|
|
//
|
|
// Base class for encoding using the lossy DCT scheme
|
|
//
|
|
|
|
class DwaCompressor::LossyDctEncoderBase
|
|
{
|
|
public:
|
|
|
|
LossyDctEncoderBase
|
|
(float quantBaseError,
|
|
char *packedAc,
|
|
char *packedDc,
|
|
const unsigned short *toNonlinear,
|
|
int width,
|
|
int height);
|
|
|
|
virtual ~LossyDctEncoderBase ();
|
|
|
|
void execute ();
|
|
|
|
//
|
|
// These return number of items, not bytes. Each item
|
|
// is an unsigned short
|
|
//
|
|
|
|
int numAcValuesEncoded () const {return _numAcComp;}
|
|
int numDcValuesEncoded () const {return _numDcComp;}
|
|
|
|
protected:
|
|
|
|
void toZigZag (half *dst, half *src);
|
|
int countSetBits (unsigned short src);
|
|
half quantize (half src, float errorTolerance);
|
|
void rleAc (half *block, unsigned short *&acPtr);
|
|
|
|
float _quantBaseError;
|
|
|
|
int _width,
|
|
_height;
|
|
const unsigned short *_toNonlinear;
|
|
|
|
int _numAcComp,
|
|
_numDcComp;
|
|
|
|
std::vector< std::vector<const char *> > _rowPtrs;
|
|
std::vector<PixelType> _type;
|
|
std::vector<SimdAlignedBuffer64f> _dctData;
|
|
|
|
|
|
//
|
|
// Pointers to the buffers where AC and DC
|
|
// DCT components should be packed for
|
|
// lossless compression downstream
|
|
//
|
|
|
|
char *_packedAc;
|
|
char *_packedDc;
|
|
|
|
|
|
//
|
|
// Our "quantization tables" - the example JPEG tables,
|
|
// normalized so that the smallest value in each is 1.0.
|
|
// This gives us a relationship between error in DCT
|
|
// components
|
|
//
|
|
|
|
float _quantTableY[64];
|
|
float _quantTableCbCr[64];
|
|
};
|
|
|
|
|
|
|
|
//
|
|
// Single channel lossy DCT encoder
|
|
//
|
|
|
|
class DwaCompressor::LossyDctEncoder: public LossyDctEncoderBase
|
|
{
|
|
public:
|
|
|
|
LossyDctEncoder
|
|
(float quantBaseError,
|
|
std::vector<const char *> &rowPtrs,
|
|
char *packedAc,
|
|
char *packedDc,
|
|
const unsigned short *toNonlinear,
|
|
int width,
|
|
int height,
|
|
PixelType type)
|
|
:
|
|
LossyDctEncoderBase
|
|
(quantBaseError, packedAc, packedDc, toNonlinear, width, height)
|
|
{
|
|
_rowPtrs.push_back(rowPtrs);
|
|
_type.push_back(type);
|
|
}
|
|
|
|
virtual ~LossyDctEncoder () {}
|
|
};
|
|
|
|
|
|
//
|
|
// RGB channel lossy DCT encoder
|
|
//
|
|
|
|
class DwaCompressor::LossyDctEncoderCsc: public LossyDctEncoderBase
|
|
{
|
|
public:
|
|
|
|
LossyDctEncoderCsc
|
|
(float quantBaseError,
|
|
std::vector<const char *> &rowPtrsR,
|
|
std::vector<const char *> &rowPtrsG,
|
|
std::vector<const char *> &rowPtrsB,
|
|
char *packedAc,
|
|
char *packedDc,
|
|
const unsigned short *toNonlinear,
|
|
int width,
|
|
int height,
|
|
PixelType typeR,
|
|
PixelType typeG,
|
|
PixelType typeB)
|
|
:
|
|
LossyDctEncoderBase
|
|
(quantBaseError, packedAc, packedDc, toNonlinear, width, height)
|
|
{
|
|
_type.push_back(typeR);
|
|
_type.push_back(typeG);
|
|
_type.push_back(typeB);
|
|
|
|
_rowPtrs.push_back(rowPtrsR);
|
|
_rowPtrs.push_back(rowPtrsG);
|
|
_rowPtrs.push_back(rowPtrsB);
|
|
}
|
|
|
|
virtual ~LossyDctEncoderCsc () {}
|
|
};
|
|
|
|
|
|
// ==============================================================
|
|
//
|
|
// LossyDctDecoderBase
|
|
//
|
|
// --------------------------------------------------------------
|
|
|
|
DwaCompressor::LossyDctDecoderBase::LossyDctDecoderBase
|
|
(char *packedAc,
|
|
char *packedDc,
|
|
const unsigned short *toLinear,
|
|
int width,
|
|
int height)
|
|
:
|
|
_isNativeXdr(false),
|
|
_packedAcCount(0),
|
|
_packedDcCount(0),
|
|
_packedAc(packedAc),
|
|
_packedDc(packedDc),
|
|
_toLinear(toLinear),
|
|
_width(width),
|
|
_height(height)
|
|
{
|
|
if (_toLinear == 0)
|
|
_toLinear = get_dwaCompressorNoOp();
|
|
|
|
_isNativeXdr = GLOBAL_SYSTEM_LITTLE_ENDIAN;
|
|
}
|
|
|
|
|
|
DwaCompressor::LossyDctDecoderBase::~LossyDctDecoderBase () {}
|
|
|
|
|
|
void
|
|
DwaCompressor::LossyDctDecoderBase::execute ()
|
|
{
|
|
int numComp = _rowPtrs.size();
|
|
int lastNonZero = 0;
|
|
int numBlocksX = (int) ceil ((float)_width / 8.0f);
|
|
int numBlocksY = (int) ceil ((float)_height / 8.0f);
|
|
int leftoverX = _width - (numBlocksX-1) * 8;
|
|
int leftoverY = _height - (numBlocksY-1) * 8;
|
|
|
|
int numFullBlocksX = (int)floor ((float)_width / 8.0f);
|
|
|
|
unsigned short tmpShortNative = 0;
|
|
unsigned short tmpShortXdr = 0;
|
|
const char *tmpConstCharPtr = 0;
|
|
|
|
unsigned short *currAcComp = (unsigned short *)_packedAc;
|
|
std::vector<unsigned short *> currDcComp (_rowPtrs.size());
|
|
std::vector<SimdAlignedBuffer64us> halfZigBlock (_rowPtrs.size());
|
|
|
|
if (_type.size() != _rowPtrs.size())
|
|
throw IEX_NAMESPACE::BaseExc ("Row pointers and types mismatch in count");
|
|
|
|
if ((_rowPtrs.size() != 3) && (_rowPtrs.size() != 1))
|
|
throw IEX_NAMESPACE::NoImplExc ("Only 1 and 3 channel encoding is supported");
|
|
|
|
_dctData.resize(numComp);
|
|
|
|
//
|
|
// Allocate a temp aligned buffer to hold a rows worth of full
|
|
// 8x8 half-float blocks
|
|
//
|
|
|
|
unsigned char *rowBlockHandle = new unsigned char
|
|
[numComp * numBlocksX * 64 * sizeof(unsigned short) + _SSE_ALIGNMENT];
|
|
|
|
unsigned short *rowBlock[3];
|
|
|
|
rowBlock[0] = (unsigned short*)rowBlockHandle;
|
|
|
|
for (int i = 0; i < _SSE_ALIGNMENT; ++i)
|
|
{
|
|
if (((size_t)(rowBlockHandle + i) & _SSE_ALIGNMENT_MASK) == 0)
|
|
rowBlock[0] = (unsigned short *)(rowBlockHandle + i);
|
|
}
|
|
|
|
for (int comp = 1; comp < numComp; ++comp)
|
|
rowBlock[comp] = rowBlock[comp - 1] + numBlocksX * 64;
|
|
|
|
//
|
|
// Pack DC components together by common plane, so we can get
|
|
// a little more out of differencing them. We'll always have
|
|
// one component per block, so we can computed offsets.
|
|
//
|
|
|
|
currDcComp[0] = (unsigned short *)_packedDc;
|
|
|
|
for (unsigned int comp = 1; comp < numComp; ++comp)
|
|
currDcComp[comp] = currDcComp[comp - 1] + numBlocksX * numBlocksY;
|
|
|
|
for (int blocky = 0; blocky < numBlocksY; ++blocky)
|
|
{
|
|
int maxY = 8;
|
|
|
|
if (blocky == numBlocksY-1)
|
|
maxY = leftoverY;
|
|
|
|
int maxX = 8;
|
|
|
|
for (int blockx = 0; blockx < numBlocksX; ++blockx)
|
|
{
|
|
if (blockx == numBlocksX-1)
|
|
maxX = leftoverX;
|
|
|
|
//
|
|
// If we can detect that the block is constant values
|
|
// (all components only have DC values, and all AC is 0),
|
|
// we can do everything only on 1 value, instead of all
|
|
// 64.
|
|
//
|
|
// This won't really help for regular images, but it is
|
|
// meant more for layers with large swaths of black
|
|
//
|
|
|
|
bool blockIsConstant = true;
|
|
|
|
for (unsigned int comp = 0; comp < numComp; ++comp)
|
|
{
|
|
|
|
//
|
|
// DC component is stored separately
|
|
//
|
|
|
|
#ifdef IMF_HAVE_SSE2
|
|
{
|
|
__m128i *dst = (__m128i*)halfZigBlock[comp]._buffer;
|
|
|
|
dst[7] = _mm_setzero_si128();
|
|
dst[6] = _mm_setzero_si128();
|
|
dst[5] = _mm_setzero_si128();
|
|
dst[4] = _mm_setzero_si128();
|
|
dst[3] = _mm_setzero_si128();
|
|
dst[2] = _mm_setzero_si128();
|
|
dst[1] = _mm_setzero_si128();
|
|
dst[0] = _mm_insert_epi16
|
|
(_mm_setzero_si128(), *currDcComp[comp]++, 0);
|
|
}
|
|
#else /* IMF_HAVE_SSE2 */
|
|
|
|
memset (halfZigBlock[comp]._buffer, 0, 64 * 2);
|
|
halfZigBlock[comp]._buffer[0] = *currDcComp[comp]++;
|
|
|
|
#endif /* IMF_HAVE_SSE2 */
|
|
|
|
_packedDcCount++;
|
|
|
|
//
|
|
// UnRLE the AC. This will modify currAcComp
|
|
//
|
|
|
|
lastNonZero = unRleAc (currAcComp, halfZigBlock[comp]._buffer);
|
|
|
|
//
|
|
// Convert from XDR to NATIVE
|
|
//
|
|
|
|
if (!_isNativeXdr)
|
|
{
|
|
for (int i = 0; i < 64; ++i)
|
|
{
|
|
tmpShortXdr = halfZigBlock[comp]._buffer[i];
|
|
tmpConstCharPtr = (const char *)&tmpShortXdr;
|
|
|
|
Xdr::read<CharPtrIO> (tmpConstCharPtr, tmpShortNative);
|
|
|
|
halfZigBlock[comp]._buffer[i] = tmpShortNative;
|
|
}
|
|
}
|
|
|
|
if (lastNonZero == 0)
|
|
{
|
|
//
|
|
// DC only case - AC components are all 0
|
|
//
|
|
|
|
half h;
|
|
|
|
h.setBits (halfZigBlock[comp]._buffer[0]);
|
|
_dctData[comp]._buffer[0] = (float)h;
|
|
|
|
dctInverse8x8DcOnly (_dctData[comp]._buffer);
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// We have some AC components that are non-zero.
|
|
// Can't use the 'constant block' optimization
|
|
//
|
|
|
|
blockIsConstant = false;
|
|
|
|
//
|
|
// Un-Zig zag
|
|
//
|
|
|
|
(*fromHalfZigZag)
|
|
(halfZigBlock[comp]._buffer, _dctData[comp]._buffer);
|
|
|
|
//
|
|
// Zig-Zag indices in normal layout are as follows:
|
|
//
|
|
// 0 1 5 6 14 15 27 28
|
|
// 2 4 7 13 16 26 29 42
|
|
// 3 8 12 17 25 30 41 43
|
|
// 9 11 18 24 31 40 44 53
|
|
// 10 19 23 32 39 45 52 54
|
|
// 20 22 33 38 46 51 55 60
|
|
// 21 34 37 47 50 56 59 61
|
|
// 35 36 48 49 57 58 62 63
|
|
//
|
|
// If lastNonZero is less than the first item on
|
|
// each row, we know that the whole row is zero and
|
|
// can be skipped in the row-oriented part of the
|
|
// iDCT.
|
|
//
|
|
// The unrolled logic here is:
|
|
//
|
|
// if lastNonZero < rowStartIdx[i],
|
|
// zeroedRows = rowsEmpty[i]
|
|
//
|
|
// where:
|
|
//
|
|
// const int rowStartIdx[] = {2, 3, 9, 10, 20, 21, 35};
|
|
// const int rowsEmpty[] = {7, 6, 5, 4, 3, 2, 1};
|
|
//
|
|
|
|
if (lastNonZero < 2)
|
|
dctInverse8x8_7(_dctData[comp]._buffer);
|
|
else if (lastNonZero < 3)
|
|
dctInverse8x8_6(_dctData[comp]._buffer);
|
|
else if (lastNonZero < 9)
|
|
dctInverse8x8_5(_dctData[comp]._buffer);
|
|
else if (lastNonZero < 10)
|
|
dctInverse8x8_4(_dctData[comp]._buffer);
|
|
else if (lastNonZero < 20)
|
|
dctInverse8x8_3(_dctData[comp]._buffer);
|
|
else if (lastNonZero < 21)
|
|
dctInverse8x8_2(_dctData[comp]._buffer);
|
|
else if (lastNonZero < 35)
|
|
dctInverse8x8_1(_dctData[comp]._buffer);
|
|
else
|
|
dctInverse8x8_0(_dctData[comp]._buffer);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Perform the CSC
|
|
//
|
|
|
|
if (numComp == 3)
|
|
{
|
|
if (!blockIsConstant)
|
|
{
|
|
csc709Inverse64 (_dctData[0]._buffer,
|
|
_dctData[1]._buffer,
|
|
_dctData[2]._buffer);
|
|
|
|
}
|
|
else
|
|
{
|
|
csc709Inverse (_dctData[0]._buffer[0],
|
|
_dctData[1]._buffer[0],
|
|
_dctData[2]._buffer[0]);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Float -> Half conversion.
|
|
//
|
|
// If the block has a constant value, just convert the first pixel.
|
|
//
|
|
|
|
for (unsigned int comp = 0; comp < numComp; ++comp)
|
|
{
|
|
if (!blockIsConstant)
|
|
{
|
|
(*convertFloatToHalf64)
|
|
(&rowBlock[comp][blockx*64], _dctData[comp]._buffer);
|
|
}
|
|
else
|
|
{
|
|
#ifdef IMF_HAVE_SSE2
|
|
|
|
__m128i *dst = (__m128i*)&rowBlock[comp][blockx*64];
|
|
|
|
dst[0] = _mm_set1_epi16
|
|
(((half)_dctData[comp]._buffer[0]).bits());
|
|
|
|
dst[1] = dst[0];
|
|
dst[2] = dst[0];
|
|
dst[3] = dst[0];
|
|
dst[4] = dst[0];
|
|
dst[5] = dst[0];
|
|
dst[6] = dst[0];
|
|
dst[7] = dst[0];
|
|
|
|
#else /* IMF_HAVE_SSE2 */
|
|
|
|
unsigned short *dst = &rowBlock[comp][blockx*64];
|
|
|
|
dst[0] = ((half)_dctData[comp]._buffer[0]).bits();
|
|
|
|
for (int i = 1; i < 64; ++i)
|
|
{
|
|
dst[i] = dst[0];
|
|
}
|
|
|
|
#endif /* IMF_HAVE_SSE2 */
|
|
} // blockIsConstant
|
|
} // comp
|
|
} // blockx
|
|
|
|
//
|
|
// At this point, we have half-float nonlinear value blocked
|
|
// in rowBlock[][]. We need to unblock the data, transfer
|
|
// back to linear, and write the results in the _rowPtrs[].
|
|
//
|
|
// There is a fast-path for aligned rows, which helps
|
|
// things a little. Since this fast path is only valid
|
|
// for full 8-element wide blocks, the partial x blocks
|
|
// are broken into a separate loop below.
|
|
//
|
|
// At the moment, the fast path requires:
|
|
// * sse support
|
|
// * aligned row pointers
|
|
// * full 8-element wide blocks
|
|
//
|
|
|
|
for (int comp = 0; comp < numComp; ++comp)
|
|
{
|
|
//
|
|
// Test if we can use the fast path
|
|
//
|
|
|
|
#ifdef IMF_HAVE_SSE2
|
|
|
|
bool fastPath = true;
|
|
|
|
for (int y = 8 * blocky; y < 8 * blocky + maxY; ++y)
|
|
{
|
|
if ((size_t)_rowPtrs[comp][y] & _SSE_ALIGNMENT_MASK)
|
|
fastPath = false;
|
|
}
|
|
|
|
if (fastPath)
|
|
{
|
|
//
|
|
// Handle all the full X blocks, in a fast path with sse2 and
|
|
// aligned row pointers
|
|
//
|
|
|
|
for (int y=8*blocky; y<8*blocky+maxY; ++y)
|
|
{
|
|
__m128i *dst = (__m128i *)_rowPtrs[comp][y];
|
|
__m128i *src = (__m128i *)&rowBlock[comp][(y & 0x7) * 8];
|
|
|
|
|
|
for (int blockx = 0; blockx < numFullBlocksX; ++blockx)
|
|
{
|
|
//
|
|
// These may need some twiddling.
|
|
// Run with multiples of 8
|
|
//
|
|
|
|
_mm_prefetch ((char *)(src + 16), _MM_HINT_NTA);
|
|
|
|
unsigned short i0 = _mm_extract_epi16 (*src, 0);
|
|
unsigned short i1 = _mm_extract_epi16 (*src, 1);
|
|
unsigned short i2 = _mm_extract_epi16 (*src, 2);
|
|
unsigned short i3 = _mm_extract_epi16 (*src, 3);
|
|
|
|
unsigned short i4 = _mm_extract_epi16 (*src, 4);
|
|
unsigned short i5 = _mm_extract_epi16 (*src, 5);
|
|
unsigned short i6 = _mm_extract_epi16 (*src, 6);
|
|
unsigned short i7 = _mm_extract_epi16 (*src, 7);
|
|
|
|
i0 = _toLinear[i0];
|
|
i1 = _toLinear[i1];
|
|
i2 = _toLinear[i2];
|
|
i3 = _toLinear[i3];
|
|
|
|
i4 = _toLinear[i4];
|
|
i5 = _toLinear[i5];
|
|
i6 = _toLinear[i6];
|
|
i7 = _toLinear[i7];
|
|
|
|
*dst = _mm_insert_epi16 (_mm_setzero_si128(), i0, 0);
|
|
*dst = _mm_insert_epi16 (*dst, i1, 1);
|
|
*dst = _mm_insert_epi16 (*dst, i2, 2);
|
|
*dst = _mm_insert_epi16 (*dst, i3, 3);
|
|
|
|
*dst = _mm_insert_epi16 (*dst, i4, 4);
|
|
*dst = _mm_insert_epi16 (*dst, i5, 5);
|
|
*dst = _mm_insert_epi16 (*dst, i6, 6);
|
|
*dst = _mm_insert_epi16 (*dst, i7, 7);
|
|
|
|
src += 8;
|
|
dst++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
#endif /* IMF_HAVE_SSE2 */
|
|
|
|
//
|
|
// Basic scalar kinda slow path for handling the full X blocks
|
|
//
|
|
|
|
for (int y = 8 * blocky; y < 8 * blocky + maxY; ++y)
|
|
{
|
|
unsigned short *dst = (unsigned short *)_rowPtrs[comp][y];
|
|
|
|
for (int blockx = 0; blockx < numFullBlocksX; ++blockx)
|
|
{
|
|
unsigned short *src =
|
|
&rowBlock[comp][blockx * 64 + ((y & 0x7) * 8)];
|
|
|
|
dst[0] = _toLinear[src[0]];
|
|
dst[1] = _toLinear[src[1]];
|
|
dst[2] = _toLinear[src[2]];
|
|
dst[3] = _toLinear[src[3]];
|
|
|
|
dst[4] = _toLinear[src[4]];
|
|
dst[5] = _toLinear[src[5]];
|
|
dst[6] = _toLinear[src[6]];
|
|
dst[7] = _toLinear[src[7]];
|
|
|
|
dst += 8;
|
|
}
|
|
}
|
|
|
|
#ifdef IMF_HAVE_SSE2
|
|
|
|
}
|
|
|
|
#endif /* IMF_HAVE_SSE2 */
|
|
|
|
//
|
|
// If we have partial X blocks, deal with all those now
|
|
// Since this should be minimal work, there currently
|
|
// is only one path that should work for everyone.
|
|
//
|
|
|
|
if (numFullBlocksX != numBlocksX)
|
|
{
|
|
for (int y = 8 * blocky; y < 8 * blocky + maxY; ++y)
|
|
{
|
|
unsigned short *src = (unsigned short *)
|
|
&rowBlock[comp][numFullBlocksX * 64 + ((y & 0x7) * 8)];
|
|
|
|
unsigned short *dst = (unsigned short *)_rowPtrs[comp][y];
|
|
|
|
dst += 8 * numFullBlocksX;
|
|
|
|
for (int x = 0; x < maxX; ++x)
|
|
{
|
|
*dst++ = _toLinear[*src++];
|
|
}
|
|
}
|
|
}
|
|
} // comp
|
|
} // blocky
|
|
|
|
//
|
|
// Walk over all the channels that are of type FLOAT.
|
|
// Convert from HALF XDR back to FLOAT XDR.
|
|
//
|
|
|
|
for (unsigned int chan = 0; chan < numComp; ++chan)
|
|
{
|
|
|
|
if (_type[chan] != FLOAT)
|
|
continue;
|
|
|
|
std::vector<unsigned short> halfXdr (_width);
|
|
|
|
for (int y=0; y<_height; ++y)
|
|
{
|
|
char *floatXdrPtr = _rowPtrs[chan][y];
|
|
|
|
memcpy(&halfXdr[0], floatXdrPtr, _width*sizeof(unsigned short));
|
|
|
|
const char *halfXdrPtr = (const char *)(&halfXdr[0]);
|
|
|
|
for (int x=0; x<_width; ++x)
|
|
{
|
|
half tmpHalf;
|
|
|
|
Xdr::read<CharPtrIO> (halfXdrPtr, tmpHalf);
|
|
Xdr::write<CharPtrIO> (floatXdrPtr, (float)tmpHalf);
|
|
|
|
//
|
|
// Xdr::write and Xdr::read will advance the ptrs
|
|
//
|
|
}
|
|
}
|
|
}
|
|
|
|
delete[] rowBlockHandle;
|
|
}
|
|
|
|
|
|
//
|
|
// Un-RLE the packed AC components into
|
|
// a half buffer. The half block should
|
|
// be the full 8x8 block (in zig-zag order
|
|
// still), not the first AC component.
|
|
//
|
|
// currAcComp is advanced as bytes are decoded.
|
|
//
|
|
// This returns the index of the last non-zero
|
|
// value in the buffer - with the index into zig zag
|
|
// order data. If we return 0, we have DC only data.
|
|
//
|
|
// This is assuminging that halfZigBlock is zero'ed
|
|
// prior to calling
|
|
//
|
|
|
|
int
|
|
DwaCompressor::LossyDctDecoderBase::unRleAc
|
|
(unsigned short *&currAcComp,
|
|
unsigned short *halfZigBlock)
|
|
{
|
|
//
|
|
// Un-RLE the RLE'd blocks. If we find an item whose
|
|
// high byte is 0xff, then insert the number of 0's
|
|
// as indicated by the low byte.
|
|
//
|
|
// Otherwise, just copy the number verbaitm.
|
|
//
|
|
|
|
int lastNonZero = 0;
|
|
int dctComp = 1;
|
|
|
|
//
|
|
// Start with a zero'ed block, so we don't have to
|
|
// write when we hit a run symbol
|
|
//
|
|
|
|
while (dctComp < 64)
|
|
{
|
|
if (*currAcComp == 0xff00)
|
|
{
|
|
//
|
|
// End of block
|
|
//
|
|
|
|
dctComp = 64;
|
|
|
|
}
|
|
else if ((*currAcComp) >> 8 == 0xff)
|
|
{
|
|
//
|
|
// Run detected! Insert 0's.
|
|
//
|
|
// Since the block has been zeroed, just advance the ptr
|
|
//
|
|
|
|
dctComp += (*currAcComp) & 0xff;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Not a run, just copy over the value
|
|
//
|
|
|
|
lastNonZero = dctComp;
|
|
halfZigBlock[dctComp] = *currAcComp;
|
|
|
|
dctComp++;
|
|
}
|
|
|
|
_packedAcCount++;
|
|
currAcComp++;
|
|
}
|
|
|
|
return lastNonZero;
|
|
}
|
|
|
|
|
|
// ==============================================================
|
|
//
|
|
// LossyDctEncoderBase
|
|
//
|
|
// --------------------------------------------------------------
|
|
|
|
DwaCompressor::LossyDctEncoderBase::LossyDctEncoderBase
|
|
(float quantBaseError,
|
|
char *packedAc,
|
|
char *packedDc,
|
|
const unsigned short *toNonlinear,
|
|
int width,
|
|
int height)
|
|
:
|
|
_quantBaseError(quantBaseError),
|
|
_width(width),
|
|
_height(height),
|
|
_toNonlinear(toNonlinear),
|
|
_numAcComp(0),
|
|
_numDcComp(0),
|
|
_packedAc(packedAc),
|
|
_packedDc(packedDc)
|
|
{
|
|
//
|
|
// Here, we take the generic JPEG quantization tables and
|
|
// normalize them by the smallest component in each table.
|
|
// This gives us a relationship amongst the DCT components,
|
|
// in terms of how sensitive each component is to
|
|
// error.
|
|
//
|
|
// A higher normalized value means we can quantize more,
|
|
// and a small normalized value means we can quantize less.
|
|
//
|
|
// Eventually, we will want an acceptable quantization
|
|
// error range for each component. We find this by
|
|
// multiplying some user-specified level (_quantBaseError)
|
|
// by the normalized table (_quantTableY, _quantTableCbCr) to
|
|
// find the acceptable quantization error range.
|
|
//
|
|
// The quantization table is not needed for decoding, and
|
|
// is not transmitted. So, if you want to get really fancy,
|
|
// you could derive some content-dependent quantization
|
|
// table, and the decoder would not need to be changed. But,
|
|
// for now, we'll just use statice quantization tables.
|
|
//
|
|
|
|
int jpegQuantTableY[] =
|
|
{
|
|
16, 11, 10, 16, 24, 40, 51, 61,
|
|
12, 12, 14, 19, 26, 58, 60, 55,
|
|
14, 13, 16, 24, 40, 57, 69, 56,
|
|
14, 17, 22, 29, 51, 87, 80, 62,
|
|
18, 22, 37, 56, 68, 109, 103, 77,
|
|
24, 35, 55, 64, 81, 104, 113, 92,
|
|
49, 64, 78, 87, 103, 121, 120, 101,
|
|
72, 92, 95, 98, 112, 100, 103, 99
|
|
};
|
|
|
|
int jpegQuantTableYMin = 10;
|
|
|
|
int jpegQuantTableCbCr[] =
|
|
{
|
|
17, 18, 24, 47, 99, 99, 99, 99,
|
|
18, 21, 26, 66, 99, 99, 99, 99,
|
|
24, 26, 56, 99, 99, 99, 99, 99,
|
|
47, 66, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99,
|
|
99, 99, 99, 99, 99, 99, 99, 99
|
|
};
|
|
|
|
int jpegQuantTableCbCrMin = 17;
|
|
|
|
for (int idx = 0; idx < 64; ++idx)
|
|
{
|
|
_quantTableY[idx] = static_cast<float> (jpegQuantTableY[idx]) /
|
|
static_cast<float> (jpegQuantTableYMin);
|
|
|
|
_quantTableCbCr[idx] = static_cast<float> (jpegQuantTableCbCr[idx]) /
|
|
static_cast<float> (jpegQuantTableCbCrMin);
|
|
}
|
|
|
|
if (_quantBaseError < 0)
|
|
quantBaseError = 0;
|
|
}
|
|
|
|
|
|
DwaCompressor::LossyDctEncoderBase::~LossyDctEncoderBase ()
|
|
{
|
|
}
|
|
|
|
|
|
//
|
|
// Given three channels of source data, encoding by first applying
|
|
// a color space conversion to a YCbCr space. Otherwise, if we only
|
|
// have one channel, just encode it as is.
|
|
//
|
|
// Other numbers of channels are somewhat unexpected at this point,
|
|
// and will throw an exception.
|
|
//
|
|
|
|
void
|
|
DwaCompressor::LossyDctEncoderBase::execute ()
|
|
{
|
|
int numBlocksX = (int)ceil ((float)_width / 8.0f);
|
|
int numBlocksY = (int)ceil ((float)_height/ 8.0f);
|
|
|
|
half halfZigCoef[64];
|
|
half halfCoef[64];
|
|
|
|
std::vector<unsigned short *> currDcComp (_rowPtrs.size());
|
|
unsigned short *currAcComp = (unsigned short *)_packedAc;
|
|
|
|
_dctData.resize (_rowPtrs.size());
|
|
_numAcComp = 0;
|
|
_numDcComp = 0;
|
|
|
|
assert (_type.size() == _rowPtrs.size());
|
|
assert ((_rowPtrs.size() == 3) || (_rowPtrs.size() == 1));
|
|
|
|
//
|
|
// Allocate a temp half buffer to quantize into for
|
|
// any FLOAT source channels.
|
|
//
|
|
|
|
int tmpHalfBufferElements = 0;
|
|
|
|
for (unsigned int chan = 0; chan < _rowPtrs.size(); ++chan)
|
|
if (_type[chan] == FLOAT)
|
|
tmpHalfBufferElements += _width * _height;
|
|
|
|
std::vector<unsigned short> tmpHalfBuffer (tmpHalfBufferElements);
|
|
|
|
char *tmpHalfBufferPtr = 0;
|
|
|
|
if (tmpHalfBufferElements)
|
|
tmpHalfBufferPtr = (char *)&tmpHalfBuffer[0];
|
|
|
|
//
|
|
// Run over all the float scanlines, quantizing,
|
|
// and re-assigning _rowPtr[y]. We need to translate
|
|
// FLOAT XDR to HALF XDR.
|
|
//
|
|
|
|
for (unsigned int chan = 0; chan < _rowPtrs.size(); ++chan)
|
|
{
|
|
if (_type[chan] != FLOAT)
|
|
continue;
|
|
|
|
for (int y = 0; y < _height; ++y)
|
|
{
|
|
float src = 0;
|
|
const char *srcXdr = _rowPtrs[chan][y];
|
|
char *dstXdr = tmpHalfBufferPtr;
|
|
|
|
for (int x = 0; x < _width; ++x)
|
|
{
|
|
|
|
Xdr::read<CharPtrIO> (srcXdr, src);
|
|
|
|
//
|
|
// Clamp to half ranges, instead of just casting. This
|
|
// avoids introducing Infs which end up getting zeroed later
|
|
//
|
|
src = std::max (
|
|
std::min ((float) std::numeric_limits<half>::max(), src),
|
|
(float)-std::numeric_limits<half>::max());
|
|
|
|
Xdr::write<CharPtrIO> (dstXdr, ((half)src).bits());
|
|
|
|
//
|
|
// Xdr::read and Xdr::write will advance the ptr
|
|
//
|
|
}
|
|
|
|
_rowPtrs[chan][y] = (const char *)tmpHalfBufferPtr;
|
|
tmpHalfBufferPtr += _width * sizeof (unsigned short);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Pack DC components together by common plane, so we can get
|
|
// a little more out of differencing them. We'll always have
|
|
// one component per block, so we can computed offsets.
|
|
//
|
|
|
|
currDcComp[0] = (unsigned short *)_packedDc;
|
|
|
|
for (unsigned int chan = 1; chan < _rowPtrs.size(); ++chan)
|
|
currDcComp[chan] = currDcComp[chan-1] + numBlocksX * numBlocksY;
|
|
|
|
for (int blocky = 0; blocky < numBlocksY; ++blocky)
|
|
{
|
|
for (int blockx = 0; blockx < numBlocksX; ++blockx)
|
|
{
|
|
half h;
|
|
unsigned short tmpShortXdr, tmpShortNative;
|
|
char *tmpCharPtr;
|
|
|
|
for (unsigned int chan = 0; chan < _rowPtrs.size(); ++chan)
|
|
{
|
|
//
|
|
// Break the source into 8x8 blocks. If we don't
|
|
// fit at the edges, mirror.
|
|
//
|
|
// Also, convert from linear to nonlinear representation.
|
|
// Our source is assumed to be XDR, and we need to convert
|
|
// to NATIVE prior to converting to float.
|
|
//
|
|
// If we're converting linear -> nonlinear, assume that the
|
|
// XDR -> NATIVE conversion is built into the lookup. Otherwise,
|
|
// we'll need to explicitly do it.
|
|
//
|
|
|
|
for (int y = 0; y < 8; ++y)
|
|
{
|
|
for (int x = 0; x < 8; ++x)
|
|
{
|
|
int vx = 8 * blockx + x;
|
|
int vy = 8 * blocky + y;
|
|
|
|
if (vx >= _width)
|
|
vx = _width - (vx - (_width - 1));
|
|
|
|
if (vx < 0) vx = _width-1;
|
|
|
|
if (vy >=_height)
|
|
vy = _height - (vy - (_height - 1));
|
|
|
|
if (vy < 0) vy = _height-1;
|
|
|
|
tmpShortXdr =
|
|
((const unsigned short *)(_rowPtrs[chan])[vy])[vx];
|
|
|
|
if (_toNonlinear)
|
|
{
|
|
h.setBits (_toNonlinear[tmpShortXdr]);
|
|
}
|
|
else
|
|
{
|
|
const char *tmpConstCharPtr =
|
|
(const char *)(&tmpShortXdr);
|
|
|
|
Xdr::read<CharPtrIO>
|
|
(tmpConstCharPtr, tmpShortNative);
|
|
|
|
h.setBits(tmpShortNative);
|
|
}
|
|
|
|
_dctData[chan]._buffer[y * 8 + x] = (float)h;
|
|
} // x
|
|
} // y
|
|
} // chan
|
|
|
|
//
|
|
// Color space conversion
|
|
//
|
|
|
|
if (_rowPtrs.size() == 3)
|
|
{
|
|
csc709Forward64 (_dctData[0]._buffer,
|
|
_dctData[1]._buffer,
|
|
_dctData[2]._buffer);
|
|
}
|
|
|
|
for (unsigned int chan = 0; chan < _rowPtrs.size(); ++chan)
|
|
{
|
|
//
|
|
// Forward DCT
|
|
//
|
|
|
|
dctForward8x8(_dctData[chan]._buffer);
|
|
|
|
//
|
|
// Quantize to half, and zigzag
|
|
//
|
|
|
|
if (chan == 0)
|
|
{
|
|
for (int i = 0; i < 64; ++i)
|
|
{
|
|
halfCoef[i] =
|
|
quantize ((half)_dctData[chan]._buffer[i],
|
|
_quantBaseError*_quantTableY[i]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < 64; ++i)
|
|
{
|
|
halfCoef[i] =
|
|
quantize ((half)_dctData[chan]._buffer[i],
|
|
_quantBaseError*_quantTableCbCr[i]);
|
|
}
|
|
}
|
|
|
|
toZigZag (halfZigCoef, halfCoef);
|
|
|
|
//
|
|
// Convert from NATIVE back to XDR, before we write out
|
|
//
|
|
|
|
for (int i = 0; i < 64; ++i)
|
|
{
|
|
tmpCharPtr = (char *)&tmpShortXdr;
|
|
Xdr::write<CharPtrIO>(tmpCharPtr, halfZigCoef[i].bits());
|
|
halfZigCoef[i].setBits(tmpShortXdr);
|
|
}
|
|
|
|
//
|
|
// Save the DC component separately, to be compressed on
|
|
// its own.
|
|
//
|
|
|
|
*currDcComp[chan]++ = halfZigCoef[0].bits();
|
|
_numDcComp++;
|
|
|
|
//
|
|
// Then RLE the AC components (which will record the count
|
|
// of the resulting number of items)
|
|
//
|
|
|
|
rleAc (halfZigCoef, currAcComp);
|
|
} // chan
|
|
} // blockx
|
|
} // blocky
|
|
}
|
|
|
|
|
|
//
|
|
// Reorder from zig-zag order to normal ordering
|
|
//
|
|
|
|
void
|
|
DwaCompressor::LossyDctEncoderBase::toZigZag (half *dst, half *src)
|
|
{
|
|
const int remap[] =
|
|
{
|
|
0,
|
|
1, 8,
|
|
16, 9, 2,
|
|
3, 10, 17, 24,
|
|
32, 25, 18, 11, 4,
|
|
5, 12, 19, 26, 33, 40,
|
|
48, 41, 34, 27, 20, 13, 6,
|
|
7, 14, 21, 28, 35, 42, 49, 56,
|
|
57, 50, 43, 36, 29, 22, 15,
|
|
23, 30, 37, 44, 51, 58,
|
|
59, 52, 45, 38, 31,
|
|
39, 46, 53, 60,
|
|
61, 54, 47,
|
|
55, 62,
|
|
63
|
|
};
|
|
|
|
for (int i=0; i<64; ++i)
|
|
dst[i] = src[remap[i]];
|
|
}
|
|
|
|
|
|
//
|
|
// Precomputing the bit count runs faster than using
|
|
// the builtin instruction, at least in one case..
|
|
//
|
|
// Precomputing 8-bits is no slower than 16-bits,
|
|
// and saves a fair bit of overhead..
|
|
//
|
|
|
|
int
|
|
DwaCompressor::LossyDctEncoderBase::countSetBits (unsigned short src)
|
|
{
|
|
static const unsigned short numBitsSet[256] =
|
|
{
|
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
|
|
};
|
|
|
|
return numBitsSet[src & 0xff] + numBitsSet[src >> 8];
|
|
}
|
|
|
|
|
|
//
|
|
// Take a DCT coefficient, as well as an acceptable error. Search
|
|
// nearby values within the error tolerance, that have fewer
|
|
// bits set.
|
|
//
|
|
// The list of candidates has been pre-computed and sorted
|
|
// in order of increasing numbers of bits set. This way, we
|
|
// can stop searching as soon as we find a candidate that
|
|
// is within the error tolerance.
|
|
//
|
|
|
|
half
|
|
DwaCompressor::LossyDctEncoderBase::quantize (half src, float errorTolerance)
|
|
{
|
|
half tmp;
|
|
float srcFloat = (float)src;
|
|
int numSetBits = countSetBits(src.bits());
|
|
const unsigned short *closest = get_dwaClosest(src.bits());
|
|
|
|
for (int targetNumSetBits = numSetBits - 1;
|
|
targetNumSetBits >= 0;
|
|
--targetNumSetBits)
|
|
{
|
|
tmp.setBits (*closest);
|
|
|
|
if (fabs ((float)tmp - srcFloat) < errorTolerance)
|
|
return tmp;
|
|
|
|
closest++;
|
|
}
|
|
|
|
return src;
|
|
}
|
|
|
|
|
|
//
|
|
// RLE the zig-zag of the AC components + copy over
|
|
// into another tmp buffer
|
|
//
|
|
// Try to do a simple RLE scheme to reduce run's of 0's. This
|
|
// differs from the jpeg EOB case, since EOB just indicates that
|
|
// the rest of the block is zero. In our case, we have lots of
|
|
// NaN symbols, which shouldn't be allowed to occur in DCT
|
|
// coefficents - so we'll use them for encoding runs.
|
|
//
|
|
// If the high byte is 0xff, then we have a run of 0's, of length
|
|
// given by the low byte. For example, 0xff03 would be a run
|
|
// of 3 0's, starting at the current location.
|
|
//
|
|
// block is our block of 64 coefficients
|
|
// acPtr a pointer to back the RLE'd values into.
|
|
//
|
|
// This will advance the counter, _numAcComp.
|
|
//
|
|
|
|
void
|
|
DwaCompressor::LossyDctEncoderBase::rleAc
|
|
(half *block,
|
|
unsigned short *&acPtr)
|
|
{
|
|
int dctComp = 1;
|
|
unsigned short rleSymbol = 0x0;
|
|
|
|
while (dctComp < 64)
|
|
{
|
|
int runLen = 1;
|
|
|
|
//
|
|
// If we don't have a 0, output verbatim
|
|
//
|
|
|
|
if (block[dctComp].bits() != rleSymbol)
|
|
{
|
|
*acPtr++ = block[dctComp].bits();
|
|
_numAcComp++;
|
|
|
|
dctComp += runLen;
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// We're sitting on a 0, so see how big the run is.
|
|
//
|
|
|
|
while ((dctComp+runLen < 64) &&
|
|
(block[dctComp+runLen].bits() == rleSymbol))
|
|
{
|
|
runLen++;
|
|
}
|
|
|
|
//
|
|
// If the run len is too small, just output verbatim
|
|
// otherwise output our run token
|
|
//
|
|
// Originally, we wouldn't have a separate symbol for
|
|
// "end of block". But in some experimentation, it looks
|
|
// like using 0xff00 for "end of block" can save a bit
|
|
// of space.
|
|
//
|
|
|
|
if (runLen == 1)
|
|
{
|
|
runLen = 1;
|
|
*acPtr++ = block[dctComp].bits();
|
|
_numAcComp++;
|
|
|
|
//
|
|
// Using 0xff00 for "end of block"
|
|
//
|
|
}
|
|
else if (runLen + dctComp == 64)
|
|
{
|
|
//
|
|
// Signal EOB
|
|
//
|
|
|
|
*acPtr++ = 0xff00;
|
|
_numAcComp++;
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// Signal normal run
|
|
//
|
|
|
|
*acPtr++ = 0xff00 | runLen;
|
|
_numAcComp++;
|
|
}
|
|
|
|
//
|
|
// Advance by runLen
|
|
//
|
|
|
|
dctComp += runLen;
|
|
}
|
|
}
|
|
|
|
|
|
// ==============================================================
|
|
//
|
|
// DwaCompressor
|
|
//
|
|
// --------------------------------------------------------------
|
|
|
|
//
|
|
// DwaCompressor()
|
|
//
|
|
|
|
DwaCompressor::DwaCompressor
|
|
(const Header &hdr,
|
|
int maxScanLineSize,
|
|
int numScanLines,
|
|
AcCompression acCompression)
|
|
:
|
|
Compressor(hdr),
|
|
_acCompression(acCompression),
|
|
_maxScanLineSize(maxScanLineSize),
|
|
_numScanLines(numScanLines),
|
|
_channels(hdr.channels()),
|
|
_packedAcBuffer(0),
|
|
_packedAcBufferSize(0),
|
|
_packedDcBuffer(0),
|
|
_packedDcBufferSize(0),
|
|
_rleBuffer(0),
|
|
_rleBufferSize(0),
|
|
_outBuffer(0),
|
|
_outBufferSize(0),
|
|
_zip(0),
|
|
_dwaCompressionLevel(45.0)
|
|
{
|
|
_min[0] = hdr.dataWindow().min.x;
|
|
_min[1] = hdr.dataWindow().min.y;
|
|
_max[0] = hdr.dataWindow().max.x;
|
|
_max[1] = hdr.dataWindow().max.y;
|
|
|
|
for (int i=0; i < NUM_COMPRESSOR_SCHEMES; ++i)
|
|
{
|
|
_planarUncBuffer[i] = 0;
|
|
_planarUncBufferSize[i] = 0;
|
|
}
|
|
|
|
//
|
|
// Check the header for a quality attribute
|
|
//
|
|
|
|
if (hasDwaCompressionLevel (hdr))
|
|
_dwaCompressionLevel = dwaCompressionLevel (hdr);
|
|
}
|
|
|
|
|
|
DwaCompressor::~DwaCompressor()
|
|
{
|
|
delete[] _packedAcBuffer;
|
|
delete[] _packedDcBuffer;
|
|
delete[] _rleBuffer;
|
|
delete[] _outBuffer;
|
|
delete _zip;
|
|
|
|
for (int i=0; i<NUM_COMPRESSOR_SCHEMES; ++i)
|
|
delete[] _planarUncBuffer[i];
|
|
}
|
|
|
|
|
|
int
|
|
DwaCompressor::numScanLines() const
|
|
{
|
|
return _numScanLines;
|
|
}
|
|
|
|
|
|
OPENEXR_IMF_NAMESPACE::Compressor::Format
|
|
DwaCompressor::format() const
|
|
{
|
|
if (GLOBAL_SYSTEM_LITTLE_ENDIAN)
|
|
return NATIVE;
|
|
else
|
|
return XDR;
|
|
}
|
|
|
|
|
|
int
|
|
DwaCompressor::compress
|
|
(const char *inPtr,
|
|
int inSize,
|
|
int minY,
|
|
const char *&outPtr)
|
|
{
|
|
return compress
|
|
(inPtr,
|
|
inSize,
|
|
IMATH_NAMESPACE::Box2i (IMATH_NAMESPACE::V2i (_min[0], minY),
|
|
IMATH_NAMESPACE::V2i (_max[0], minY + numScanLines() - 1)),
|
|
outPtr);
|
|
}
|
|
|
|
|
|
int
|
|
DwaCompressor::compressTile
|
|
(const char *inPtr,
|
|
int inSize,
|
|
IMATH_NAMESPACE::Box2i range,
|
|
const char *&outPtr)
|
|
{
|
|
return compress (inPtr, inSize, range, outPtr);
|
|
}
|
|
|
|
|
|
int
|
|
DwaCompressor::compress
|
|
(const char *inPtr,
|
|
int inSize,
|
|
IMATH_NAMESPACE::Box2i range,
|
|
const char *&outPtr)
|
|
{
|
|
const char *inDataPtr = inPtr;
|
|
char *packedAcEnd = 0;
|
|
char *packedDcEnd = 0;
|
|
int fileVersion = 2; // Starting with 2, we write the channel
|
|
// classification rules into the file
|
|
|
|
if (fileVersion < 2)
|
|
initializeLegacyChannelRules();
|
|
else
|
|
initializeDefaultChannelRules();
|
|
|
|
size_t outBufferSize = 0;
|
|
initializeBuffers(outBufferSize);
|
|
|
|
unsigned short channelRuleSize = 0;
|
|
std::vector<Classifier> channelRules;
|
|
if (fileVersion >= 2)
|
|
{
|
|
relevantChannelRules(channelRules);
|
|
|
|
channelRuleSize = Xdr::size<unsigned short>();
|
|
for (size_t i = 0; i < channelRules.size(); ++i)
|
|
channelRuleSize += channelRules[i].size();
|
|
}
|
|
|
|
//
|
|
// Remember to allocate _outBuffer, if we haven't done so already.
|
|
//
|
|
|
|
outBufferSize += channelRuleSize;
|
|
if (outBufferSize > _outBufferSize)
|
|
{
|
|
_outBufferSize = outBufferSize;
|
|
if (_outBuffer != 0)
|
|
delete[] _outBuffer;
|
|
_outBuffer = new char[outBufferSize];
|
|
}
|
|
|
|
char *outDataPtr = &_outBuffer[NUM_SIZES_SINGLE * sizeof(OPENEXR_IMF_NAMESPACE::Int64) +
|
|
channelRuleSize];
|
|
|
|
//
|
|
// We might not be dealing with any color data, in which
|
|
// case the AC buffer size will be 0, and deferencing
|
|
// a vector will not be a good thing to do.
|
|
//
|
|
|
|
if (_packedAcBuffer)
|
|
packedAcEnd = _packedAcBuffer;
|
|
|
|
if (_packedDcBuffer)
|
|
packedDcEnd = _packedDcBuffer;
|
|
|
|
#define OBIDX(x) (Int64 *)&_outBuffer[x * sizeof (Int64)]
|
|
|
|
Int64 *version = OBIDX (VERSION);
|
|
Int64 *unknownUncompressedSize = OBIDX (UNKNOWN_UNCOMPRESSED_SIZE);
|
|
Int64 *unknownCompressedSize = OBIDX (UNKNOWN_COMPRESSED_SIZE);
|
|
Int64 *acCompressedSize = OBIDX (AC_COMPRESSED_SIZE);
|
|
Int64 *dcCompressedSize = OBIDX (DC_COMPRESSED_SIZE);
|
|
Int64 *rleCompressedSize = OBIDX (RLE_COMPRESSED_SIZE);
|
|
Int64 *rleUncompressedSize = OBIDX (RLE_UNCOMPRESSED_SIZE);
|
|
Int64 *rleRawSize = OBIDX (RLE_RAW_SIZE);
|
|
|
|
Int64 *totalAcUncompressedCount = OBIDX (AC_UNCOMPRESSED_COUNT);
|
|
Int64 *totalDcUncompressedCount = OBIDX (DC_UNCOMPRESSED_COUNT);
|
|
|
|
Int64 *acCompression = OBIDX (AC_COMPRESSION);
|
|
|
|
int minX = range.min.x;
|
|
int maxX = std::min(range.max.x, _max[0]);
|
|
int minY = range.min.y;
|
|
int maxY = std::min(range.max.y, _max[1]);
|
|
|
|
//
|
|
// Zero all the numbers in the chunk header
|
|
//
|
|
|
|
memset (_outBuffer, 0, NUM_SIZES_SINGLE * sizeof (Int64));
|
|
|
|
//
|
|
// Setup the AC compression strategy and the version in the data block,
|
|
// then write the relevant channel classification rules if needed
|
|
//
|
|
*version = fileVersion;
|
|
*acCompression = _acCompression;
|
|
|
|
setupChannelData (minX, minY, maxX, maxY);
|
|
|
|
if (fileVersion >= 2)
|
|
{
|
|
char *writePtr = &_outBuffer[NUM_SIZES_SINGLE * sizeof(OPENEXR_IMF_NAMESPACE::Int64)];
|
|
Xdr::write<CharPtrIO> (writePtr, channelRuleSize);
|
|
|
|
for (size_t i = 0; i < channelRules.size(); ++i)
|
|
channelRules[i].write(writePtr);
|
|
}
|
|
|
|
//
|
|
// Determine the start of each row in the input buffer
|
|
// Channels are interleaved by scanline
|
|
//
|
|
|
|
std::vector<bool> encodedChannels (_channelData.size());
|
|
std::vector< std::vector<const char *> > rowPtrs (_channelData.size());
|
|
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
encodedChannels[chan] = false;
|
|
|
|
inDataPtr = inPtr;
|
|
|
|
for (int y = minY; y <= maxY; ++y)
|
|
{
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
{
|
|
|
|
ChannelData *cd = &_channelData[chan];
|
|
|
|
if (IMATH_NAMESPACE::modp(y, cd->ySampling) != 0)
|
|
continue;
|
|
|
|
rowPtrs[chan].push_back(inDataPtr);
|
|
inDataPtr += cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize(cd->type);
|
|
}
|
|
}
|
|
|
|
inDataPtr = inPtr;
|
|
|
|
//
|
|
// Make a pass over all our CSC sets and try to encode them first
|
|
//
|
|
|
|
for (unsigned int csc = 0; csc < _cscSets.size(); ++csc)
|
|
{
|
|
|
|
LossyDctEncoderCsc encoder
|
|
(_dwaCompressionLevel / 100000.f,
|
|
rowPtrs[_cscSets[csc].idx[0]],
|
|
rowPtrs[_cscSets[csc].idx[1]],
|
|
rowPtrs[_cscSets[csc].idx[2]],
|
|
packedAcEnd,
|
|
packedDcEnd,
|
|
get_dwaCompressorToNonlinear(),
|
|
_channelData[_cscSets[csc].idx[0]].width,
|
|
_channelData[_cscSets[csc].idx[0]].height,
|
|
_channelData[_cscSets[csc].idx[0]].type,
|
|
_channelData[_cscSets[csc].idx[1]].type,
|
|
_channelData[_cscSets[csc].idx[2]].type);
|
|
|
|
encoder.execute();
|
|
|
|
*totalAcUncompressedCount += encoder.numAcValuesEncoded();
|
|
*totalDcUncompressedCount += encoder.numDcValuesEncoded();
|
|
|
|
packedAcEnd += encoder.numAcValuesEncoded() * sizeof(unsigned short);
|
|
packedDcEnd += encoder.numDcValuesEncoded() * sizeof(unsigned short);
|
|
|
|
encodedChannels[_cscSets[csc].idx[0]] = true;
|
|
encodedChannels[_cscSets[csc].idx[1]] = true;
|
|
encodedChannels[_cscSets[csc].idx[2]] = true;
|
|
}
|
|
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
{
|
|
ChannelData *cd = &_channelData[chan];
|
|
|
|
if (encodedChannels[chan])
|
|
continue;
|
|
|
|
switch (cd->compression)
|
|
{
|
|
case LOSSY_DCT:
|
|
|
|
//
|
|
// For LOSSY_DCT, treat this just like the CSC'd case,
|
|
// but only operate on one channel
|
|
//
|
|
|
|
{
|
|
const unsigned short *nonlinearLut = 0;
|
|
|
|
if (!cd->pLinear)
|
|
nonlinearLut = get_dwaCompressorToNonlinear();
|
|
|
|
LossyDctEncoder encoder
|
|
(_dwaCompressionLevel / 100000.f,
|
|
rowPtrs[chan],
|
|
packedAcEnd,
|
|
packedDcEnd,
|
|
nonlinearLut,
|
|
cd->width,
|
|
cd->height,
|
|
cd->type);
|
|
|
|
encoder.execute();
|
|
|
|
*totalAcUncompressedCount += encoder.numAcValuesEncoded();
|
|
*totalDcUncompressedCount += encoder.numDcValuesEncoded();
|
|
|
|
packedAcEnd +=
|
|
encoder.numAcValuesEncoded() * sizeof (unsigned short);
|
|
|
|
packedDcEnd +=
|
|
encoder.numDcValuesEncoded() * sizeof (unsigned short);
|
|
}
|
|
|
|
break;
|
|
|
|
case RLE:
|
|
|
|
//
|
|
// For RLE, bash the bytes up so that the first bytes of each
|
|
// pixel are contingous, as are the second bytes, and so on.
|
|
//
|
|
|
|
for (unsigned int y = 0; y < rowPtrs[chan].size(); ++y)
|
|
{
|
|
const char *row = rowPtrs[chan][y];
|
|
|
|
for (int x = 0; x < cd->width; ++x)
|
|
{
|
|
for (int byte = 0;
|
|
byte < OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
|
|
++byte)
|
|
{
|
|
|
|
*cd->planarUncRleEnd[byte]++ = *row++;
|
|
}
|
|
}
|
|
|
|
*rleRawSize += cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize(cd->type);
|
|
}
|
|
|
|
break;
|
|
|
|
case UNKNOWN:
|
|
|
|
//
|
|
// Otherwise, just copy data over verbatim
|
|
//
|
|
|
|
{
|
|
int scanlineSize = cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize(cd->type);
|
|
|
|
for (unsigned int y = 0; y < rowPtrs[chan].size(); ++y)
|
|
{
|
|
memcpy (cd->planarUncBufferEnd,
|
|
rowPtrs[chan][y],
|
|
scanlineSize);
|
|
|
|
cd->planarUncBufferEnd += scanlineSize;
|
|
}
|
|
|
|
*unknownUncompressedSize += cd->planarUncSize;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert (false);
|
|
}
|
|
|
|
encodedChannels[chan] = true;
|
|
}
|
|
|
|
//
|
|
// Pack the Unknown data into the output buffer first. Instead of
|
|
// just copying it uncompressed, try zlib compression at least.
|
|
//
|
|
|
|
if (*unknownUncompressedSize > 0)
|
|
{
|
|
uLongf inSize = (uLongf)(*unknownUncompressedSize);
|
|
uLongf outSize = compressBound (inSize);
|
|
|
|
if (Z_OK != ::compress2 ((Bytef *)outDataPtr,
|
|
&outSize,
|
|
(const Bytef *)_planarUncBuffer[UNKNOWN],
|
|
inSize,
|
|
9))
|
|
{
|
|
throw IEX_NAMESPACE::BaseExc ("Data compression (zlib) failed.");
|
|
}
|
|
|
|
outDataPtr += outSize;
|
|
*unknownCompressedSize = outSize;
|
|
}
|
|
|
|
//
|
|
// Now, pack all the Lossy DCT coefficients into our output
|
|
// buffer, with Huffman encoding.
|
|
//
|
|
// Also, record the compressed size and the number of
|
|
// uncompressed componentns we have.
|
|
//
|
|
|
|
if (*totalAcUncompressedCount > 0)
|
|
{
|
|
switch (_acCompression)
|
|
{
|
|
case STATIC_HUFFMAN:
|
|
|
|
*acCompressedSize = (int)
|
|
hufCompress((unsigned short *)_packedAcBuffer,
|
|
(int)*totalAcUncompressedCount,
|
|
outDataPtr);
|
|
break;
|
|
|
|
case DEFLATE:
|
|
|
|
{
|
|
uLongf destLen = compressBound (
|
|
(*totalAcUncompressedCount) * sizeof (unsigned short));
|
|
|
|
if (Z_OK != ::compress2
|
|
((Bytef *)outDataPtr,
|
|
&destLen,
|
|
(Bytef *)_packedAcBuffer,
|
|
(uLong)(*totalAcUncompressedCount
|
|
* sizeof (unsigned short)),
|
|
9))
|
|
{
|
|
throw IEX_NAMESPACE::InputExc ("Data compression (zlib) failed.");
|
|
}
|
|
|
|
*acCompressedSize = destLen;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
assert (false);
|
|
}
|
|
|
|
outDataPtr += *acCompressedSize;
|
|
}
|
|
|
|
//
|
|
// Handle the DC components separately
|
|
//
|
|
|
|
if (*totalDcUncompressedCount > 0)
|
|
{
|
|
*dcCompressedSize = _zip->compress
|
|
(_packedDcBuffer,
|
|
(int)(*totalDcUncompressedCount) * sizeof (unsigned short),
|
|
outDataPtr);
|
|
|
|
outDataPtr += *dcCompressedSize;
|
|
}
|
|
|
|
//
|
|
// If we have RLE data, first RLE encode it and set the uncompressed
|
|
// size. Then, deflate the results and set the compressed size.
|
|
//
|
|
|
|
if (*rleRawSize > 0)
|
|
{
|
|
*rleUncompressedSize = rleCompress
|
|
((int)(*rleRawSize),
|
|
_planarUncBuffer[RLE],
|
|
(signed char *)_rleBuffer);
|
|
|
|
uLongf dstLen = compressBound ((uLongf)*rleUncompressedSize);
|
|
|
|
if (Z_OK != ::compress2
|
|
((Bytef *)outDataPtr,
|
|
&dstLen,
|
|
(Bytef *)_rleBuffer,
|
|
(uLong)(*rleUncompressedSize),
|
|
9))
|
|
{
|
|
throw IEX_NAMESPACE::BaseExc ("Error compressing RLE'd data.");
|
|
}
|
|
|
|
*rleCompressedSize = dstLen;
|
|
outDataPtr += *rleCompressedSize;
|
|
}
|
|
|
|
//
|
|
// Flip the counters to XDR format
|
|
//
|
|
|
|
for (int i = 0; i < NUM_SIZES_SINGLE; ++i)
|
|
{
|
|
Int64 src = *(((Int64 *)_outBuffer) + i);
|
|
char *dst = (char *)(((Int64 *)_outBuffer) + i);
|
|
|
|
Xdr::write<CharPtrIO> (dst, src);
|
|
}
|
|
|
|
//
|
|
// We're done - compute the number of bytes we packed
|
|
//
|
|
|
|
outPtr = _outBuffer;
|
|
|
|
return static_cast<int>(outDataPtr - _outBuffer + 1);
|
|
}
|
|
|
|
|
|
int
|
|
DwaCompressor::uncompress
|
|
(const char *inPtr,
|
|
int inSize,
|
|
int minY,
|
|
const char *&outPtr)
|
|
{
|
|
return uncompress (inPtr,
|
|
inSize,
|
|
IMATH_NAMESPACE::Box2i (IMATH_NAMESPACE::V2i (_min[0], minY),
|
|
IMATH_NAMESPACE::V2i (_max[0], minY + numScanLines() - 1)),
|
|
outPtr);
|
|
}
|
|
|
|
|
|
int
|
|
DwaCompressor::uncompressTile
|
|
(const char *inPtr,
|
|
int inSize,
|
|
IMATH_NAMESPACE::Box2i range,
|
|
const char *&outPtr)
|
|
{
|
|
return uncompress (inPtr, inSize, range, outPtr);
|
|
}
|
|
|
|
|
|
int
|
|
DwaCompressor::uncompress
|
|
(const char *inPtr,
|
|
int inSize,
|
|
IMATH_NAMESPACE::Box2i range,
|
|
const char *&outPtr)
|
|
{
|
|
int minX = range.min.x;
|
|
int maxX = std::min (range.max.x, _max[0]);
|
|
int minY = range.min.y;
|
|
int maxY = std::min (range.max.y, _max[1]);
|
|
|
|
int headerSize = NUM_SIZES_SINGLE*sizeof(Int64);
|
|
if (inSize < headerSize)
|
|
{
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
"(truncated header).");
|
|
}
|
|
|
|
//
|
|
// Flip the counters from XDR to NATIVE
|
|
//
|
|
|
|
for (int i = 0; i < NUM_SIZES_SINGLE; ++i)
|
|
{
|
|
Int64 *dst = (((Int64 *)inPtr) + i);
|
|
const char *src = (char *)(((Int64 *)inPtr) + i);
|
|
|
|
Xdr::read<CharPtrIO> (src, *dst);
|
|
}
|
|
|
|
//
|
|
// Unwind all the counter info
|
|
//
|
|
|
|
const Int64 *inPtr64 = (const Int64*) inPtr;
|
|
|
|
Int64 version = *(inPtr64 + VERSION);
|
|
Int64 unknownUncompressedSize = *(inPtr64 + UNKNOWN_UNCOMPRESSED_SIZE);
|
|
Int64 unknownCompressedSize = *(inPtr64 + UNKNOWN_COMPRESSED_SIZE);
|
|
Int64 acCompressedSize = *(inPtr64 + AC_COMPRESSED_SIZE);
|
|
Int64 dcCompressedSize = *(inPtr64 + DC_COMPRESSED_SIZE);
|
|
Int64 rleCompressedSize = *(inPtr64 + RLE_COMPRESSED_SIZE);
|
|
Int64 rleUncompressedSize = *(inPtr64 + RLE_UNCOMPRESSED_SIZE);
|
|
Int64 rleRawSize = *(inPtr64 + RLE_RAW_SIZE);
|
|
|
|
Int64 totalAcUncompressedCount = *(inPtr64 + AC_UNCOMPRESSED_COUNT);
|
|
Int64 totalDcUncompressedCount = *(inPtr64 + DC_UNCOMPRESSED_COUNT);
|
|
|
|
Int64 acCompression = *(inPtr64 + AC_COMPRESSION);
|
|
|
|
Int64 compressedSize = unknownCompressedSize +
|
|
acCompressedSize +
|
|
dcCompressedSize +
|
|
rleCompressedSize;
|
|
|
|
const char *dataPtr = inPtr + NUM_SIZES_SINGLE * sizeof(Int64);
|
|
|
|
/* Both the sum and individual sizes are checked in case of overflow. */
|
|
if (inSize < (headerSize + compressedSize) ||
|
|
inSize < unknownCompressedSize ||
|
|
inSize < acCompressedSize ||
|
|
inSize < dcCompressedSize ||
|
|
inSize < rleCompressedSize)
|
|
{
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
"(truncated file).");
|
|
}
|
|
|
|
if ((SInt64)unknownUncompressedSize < 0 ||
|
|
(SInt64)unknownCompressedSize < 0 ||
|
|
(SInt64)acCompressedSize < 0 ||
|
|
(SInt64)dcCompressedSize < 0 ||
|
|
(SInt64)rleCompressedSize < 0 ||
|
|
(SInt64)rleUncompressedSize < 0 ||
|
|
(SInt64)rleRawSize < 0 ||
|
|
(SInt64)totalAcUncompressedCount < 0 ||
|
|
(SInt64)totalDcUncompressedCount < 0)
|
|
{
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
" (corrupt header).");
|
|
}
|
|
|
|
if (version < 2)
|
|
initializeLegacyChannelRules();
|
|
else
|
|
{
|
|
unsigned short ruleSize = 0;
|
|
Xdr::read<CharPtrIO>(dataPtr, ruleSize);
|
|
|
|
if (ruleSize < 0)
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
" (corrupt header file).");
|
|
|
|
headerSize += ruleSize;
|
|
if (inSize < headerSize + compressedSize)
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
" (truncated file).");
|
|
|
|
_channelRules.clear();
|
|
ruleSize -= Xdr::size<unsigned short> ();
|
|
while (ruleSize > 0)
|
|
{
|
|
Classifier rule(dataPtr, ruleSize);
|
|
|
|
_channelRules.push_back(rule);
|
|
ruleSize -= rule.size();
|
|
}
|
|
}
|
|
|
|
|
|
size_t outBufferSize = 0;
|
|
initializeBuffers(outBufferSize);
|
|
|
|
//
|
|
// Allocate _outBuffer, if we haven't done so already
|
|
//
|
|
|
|
if (_maxScanLineSize * numScanLines() > _outBufferSize)
|
|
{
|
|
_outBufferSize = _maxScanLineSize * numScanLines();
|
|
if (_outBuffer != 0)
|
|
delete[] _outBuffer;
|
|
_outBuffer = new char[_maxScanLineSize * numScanLines()];
|
|
}
|
|
|
|
|
|
char *outBufferEnd = _outBuffer;
|
|
|
|
|
|
//
|
|
// Find the start of the RLE packed AC components and
|
|
// the DC components for each channel. This will be handy
|
|
// if you want to decode the channels in parallel later on.
|
|
//
|
|
|
|
char *packedAcBufferEnd = 0;
|
|
|
|
if (_packedAcBuffer)
|
|
packedAcBufferEnd = _packedAcBuffer;
|
|
|
|
char *packedDcBufferEnd = 0;
|
|
|
|
if (_packedDcBuffer)
|
|
packedDcBufferEnd = _packedDcBuffer;
|
|
|
|
//
|
|
// UNKNOWN data is packed first, followed by the
|
|
// Huffman-compressed AC, then the DC values,
|
|
// and then the zlib compressed RLE data.
|
|
//
|
|
|
|
const char *compressedUnknownBuf = dataPtr;
|
|
|
|
const char *compressedAcBuf = compressedUnknownBuf +
|
|
static_cast<ptrdiff_t>(unknownCompressedSize);
|
|
const char *compressedDcBuf = compressedAcBuf +
|
|
static_cast<ptrdiff_t>(acCompressedSize);
|
|
const char *compressedRleBuf = compressedDcBuf +
|
|
static_cast<ptrdiff_t>(dcCompressedSize);
|
|
|
|
//
|
|
// Sanity check that the version is something we expect. Right now,
|
|
// we can decode version 0, 1, and 2. v1 adds 'end of block' symbols
|
|
// to the AC RLE. v2 adds channel classification rules at the
|
|
// start of the data block.
|
|
//
|
|
|
|
if (version > 2)
|
|
throw IEX_NAMESPACE::InputExc ("Invalid version of compressed data block");
|
|
|
|
setupChannelData(minX, minY, maxX, maxY);
|
|
|
|
//
|
|
// Uncompress the UNKNOWN data into _planarUncBuffer[UNKNOWN]
|
|
//
|
|
|
|
if (unknownCompressedSize > 0)
|
|
{
|
|
if (unknownUncompressedSize > _planarUncBufferSize[UNKNOWN])
|
|
{
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
"(corrupt header).");
|
|
}
|
|
|
|
uLongf outSize = (uLongf)unknownUncompressedSize;
|
|
|
|
if (Z_OK != ::uncompress
|
|
((Bytef *)_planarUncBuffer[UNKNOWN],
|
|
&outSize,
|
|
(Bytef *)compressedUnknownBuf,
|
|
(uLong)unknownCompressedSize))
|
|
{
|
|
throw IEX_NAMESPACE::BaseExc("Error uncompressing UNKNOWN data.");
|
|
}
|
|
}
|
|
|
|
//
|
|
// Uncompress the AC data into _packedAcBuffer
|
|
//
|
|
|
|
if (acCompressedSize > 0)
|
|
{
|
|
if (totalAcUncompressedCount*sizeof(unsigned short) > _packedAcBufferSize)
|
|
{
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
"(corrupt header).");
|
|
}
|
|
|
|
//
|
|
// Don't trust the user to get it right, look in the file.
|
|
//
|
|
|
|
switch (acCompression)
|
|
{
|
|
case STATIC_HUFFMAN:
|
|
|
|
hufUncompress
|
|
(compressedAcBuf,
|
|
(int)acCompressedSize,
|
|
(unsigned short *)_packedAcBuffer,
|
|
(int)totalAcUncompressedCount);
|
|
|
|
break;
|
|
|
|
case DEFLATE:
|
|
{
|
|
uLongf destLen =
|
|
(int)(totalAcUncompressedCount) * sizeof (unsigned short);
|
|
|
|
if (Z_OK != ::uncompress
|
|
((Bytef *)_packedAcBuffer,
|
|
&destLen,
|
|
(Bytef *)compressedAcBuf,
|
|
(uLong)acCompressedSize))
|
|
{
|
|
throw IEX_NAMESPACE::InputExc ("Data decompression (zlib) failed.");
|
|
}
|
|
|
|
if (totalAcUncompressedCount * sizeof (unsigned short) !=
|
|
destLen)
|
|
{
|
|
throw IEX_NAMESPACE::InputExc ("AC data corrupt.");
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
|
|
throw IEX_NAMESPACE::NoImplExc ("Unknown AC Compression");
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Uncompress the DC data into _packedDcBuffer
|
|
//
|
|
|
|
if (dcCompressedSize > 0)
|
|
{
|
|
if (totalDcUncompressedCount*sizeof(unsigned short) > _packedDcBufferSize)
|
|
{
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
"(corrupt header).");
|
|
}
|
|
|
|
if (_zip->uncompress
|
|
(compressedDcBuf, (int)dcCompressedSize, _packedDcBuffer)
|
|
!= (int)totalDcUncompressedCount * sizeof (unsigned short))
|
|
{
|
|
throw IEX_NAMESPACE::BaseExc("DC data corrupt.");
|
|
}
|
|
}
|
|
|
|
//
|
|
// Uncompress the RLE data into _rleBuffer, then unRLE the results
|
|
// into _planarUncBuffer[RLE]
|
|
//
|
|
|
|
if (rleRawSize > 0)
|
|
{
|
|
if (rleUncompressedSize > _rleBufferSize ||
|
|
rleRawSize > _planarUncBufferSize[RLE])
|
|
{
|
|
throw IEX_NAMESPACE::InputExc("Error uncompressing DWA data"
|
|
"(corrupt header).");
|
|
}
|
|
|
|
uLongf dstLen = (uLongf)rleUncompressedSize;
|
|
|
|
if (Z_OK != ::uncompress
|
|
((Bytef *)_rleBuffer,
|
|
&dstLen,
|
|
(Bytef *)compressedRleBuf,
|
|
(uLong)rleCompressedSize))
|
|
{
|
|
throw IEX_NAMESPACE::BaseExc("Error uncompressing RLE data.");
|
|
}
|
|
|
|
if (dstLen != rleUncompressedSize)
|
|
throw IEX_NAMESPACE::BaseExc("RLE data corrupted");
|
|
|
|
if (rleUncompress
|
|
((int)rleUncompressedSize,
|
|
(int)rleRawSize,
|
|
(signed char *)_rleBuffer,
|
|
_planarUncBuffer[RLE]) != rleRawSize)
|
|
{
|
|
throw IEX_NAMESPACE::BaseExc("RLE data corrupted");
|
|
}
|
|
}
|
|
|
|
//
|
|
// Determine the start of each row in the output buffer
|
|
//
|
|
|
|
std::vector<bool> decodedChannels (_channelData.size());
|
|
std::vector< std::vector<char *> > rowPtrs (_channelData.size());
|
|
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
decodedChannels[chan] = false;
|
|
|
|
outBufferEnd = _outBuffer;
|
|
|
|
for (int y = minY; y <= maxY; ++y)
|
|
{
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
{
|
|
ChannelData *cd = &_channelData[chan];
|
|
|
|
if (IMATH_NAMESPACE::modp (y, cd->ySampling) != 0)
|
|
continue;
|
|
|
|
rowPtrs[chan].push_back (outBufferEnd);
|
|
outBufferEnd += cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Setup to decode each block of 3 channels that need to
|
|
// be handled together
|
|
//
|
|
|
|
for (unsigned int csc = 0; csc < _cscSets.size(); ++csc)
|
|
{
|
|
int rChan = _cscSets[csc].idx[0];
|
|
int gChan = _cscSets[csc].idx[1];
|
|
int bChan = _cscSets[csc].idx[2];
|
|
|
|
|
|
LossyDctDecoderCsc decoder
|
|
(rowPtrs[rChan],
|
|
rowPtrs[gChan],
|
|
rowPtrs[bChan],
|
|
packedAcBufferEnd,
|
|
packedDcBufferEnd,
|
|
get_dwaCompressorToLinear(),
|
|
_channelData[rChan].width,
|
|
_channelData[rChan].height,
|
|
_channelData[rChan].type,
|
|
_channelData[gChan].type,
|
|
_channelData[bChan].type);
|
|
|
|
decoder.execute();
|
|
|
|
packedAcBufferEnd +=
|
|
decoder.numAcValuesEncoded() * sizeof (unsigned short);
|
|
|
|
packedDcBufferEnd +=
|
|
decoder.numDcValuesEncoded() * sizeof (unsigned short);
|
|
|
|
decodedChannels[rChan] = true;
|
|
decodedChannels[gChan] = true;
|
|
decodedChannels[bChan] = true;
|
|
}
|
|
|
|
//
|
|
// Setup to handle the remaining channels by themselves
|
|
//
|
|
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
{
|
|
if (decodedChannels[chan])
|
|
continue;
|
|
|
|
ChannelData *cd = &_channelData[chan];
|
|
int pixelSize = OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
|
|
|
|
switch (cd->compression)
|
|
{
|
|
case LOSSY_DCT:
|
|
|
|
//
|
|
// Setup a single-channel lossy DCT decoder pointing
|
|
// at the output buffer
|
|
//
|
|
|
|
{
|
|
const unsigned short *linearLut = 0;
|
|
|
|
if (!cd->pLinear)
|
|
linearLut = get_dwaCompressorToLinear();
|
|
|
|
LossyDctDecoder decoder
|
|
(rowPtrs[chan],
|
|
packedAcBufferEnd,
|
|
packedDcBufferEnd,
|
|
linearLut,
|
|
cd->width,
|
|
cd->height,
|
|
cd->type);
|
|
|
|
decoder.execute();
|
|
|
|
packedAcBufferEnd +=
|
|
decoder.numAcValuesEncoded() * sizeof (unsigned short);
|
|
|
|
packedDcBufferEnd +=
|
|
decoder.numDcValuesEncoded() * sizeof (unsigned short);
|
|
}
|
|
|
|
break;
|
|
|
|
case RLE:
|
|
|
|
//
|
|
// For the RLE case, the data has been un-RLE'd into
|
|
// planarUncRleEnd[], but is still split out by bytes.
|
|
// We need to rearrange the bytes back into the correct
|
|
// order in the output buffer;
|
|
//
|
|
|
|
{
|
|
int row = 0;
|
|
|
|
for (int y = minY; y <= maxY; ++y)
|
|
{
|
|
if (IMATH_NAMESPACE::modp (y, cd->ySampling) != 0)
|
|
continue;
|
|
|
|
char *dst = rowPtrs[chan][row];
|
|
|
|
if (pixelSize == 2)
|
|
{
|
|
interleaveByte2 (dst,
|
|
cd->planarUncRleEnd[0],
|
|
cd->planarUncRleEnd[1],
|
|
cd->width);
|
|
|
|
cd->planarUncRleEnd[0] += cd->width;
|
|
cd->planarUncRleEnd[1] += cd->width;
|
|
}
|
|
else
|
|
{
|
|
for (int x = 0; x < cd->width; ++x)
|
|
{
|
|
for (int byte = 0; byte < pixelSize; ++byte)
|
|
{
|
|
*dst++ = *cd->planarUncRleEnd[byte]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
row++;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case UNKNOWN:
|
|
|
|
//
|
|
// In the UNKNOWN case, data is already in planarUncBufferEnd
|
|
// and just needs to copied over to the output buffer
|
|
//
|
|
|
|
{
|
|
int row = 0;
|
|
int dstScanlineSize = cd->width * OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
|
|
|
|
for (int y = minY; y <= maxY; ++y)
|
|
{
|
|
if (IMATH_NAMESPACE::modp (y, cd->ySampling) != 0)
|
|
continue;
|
|
|
|
memcpy (rowPtrs[chan][row],
|
|
cd->planarUncBufferEnd,
|
|
dstScanlineSize);
|
|
|
|
cd->planarUncBufferEnd += dstScanlineSize;
|
|
row++;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw IEX_NAMESPACE::NoImplExc ("Unhandled compression scheme case");
|
|
break;
|
|
}
|
|
|
|
decodedChannels[chan] = true;
|
|
}
|
|
|
|
//
|
|
// Return a ptr to _outBuffer
|
|
//
|
|
|
|
outPtr = _outBuffer;
|
|
return (int)(outBufferEnd - _outBuffer);
|
|
}
|
|
|
|
|
|
// static
|
|
void
|
|
DwaCompressor::initializeFuncs()
|
|
{
|
|
convertFloatToHalf64 = convertFloatToHalf64_scalar;
|
|
fromHalfZigZag = fromHalfZigZag_scalar;
|
|
|
|
CpuId cpuId;
|
|
|
|
//
|
|
// Setup HALF <-> FLOAT conversion implementations
|
|
//
|
|
|
|
if (cpuId.avx && cpuId.f16c)
|
|
{
|
|
convertFloatToHalf64 = convertFloatToHalf64_f16c;
|
|
fromHalfZigZag = fromHalfZigZag_f16c;
|
|
}
|
|
|
|
//
|
|
// Setup inverse DCT implementations
|
|
//
|
|
|
|
dctInverse8x8_0 = dctInverse8x8_scalar<0>;
|
|
dctInverse8x8_1 = dctInverse8x8_scalar<1>;
|
|
dctInverse8x8_2 = dctInverse8x8_scalar<2>;
|
|
dctInverse8x8_3 = dctInverse8x8_scalar<3>;
|
|
dctInverse8x8_4 = dctInverse8x8_scalar<4>;
|
|
dctInverse8x8_5 = dctInverse8x8_scalar<5>;
|
|
dctInverse8x8_6 = dctInverse8x8_scalar<6>;
|
|
dctInverse8x8_7 = dctInverse8x8_scalar<7>;
|
|
|
|
if (cpuId.avx)
|
|
{
|
|
dctInverse8x8_0 = dctInverse8x8_avx<0>;
|
|
dctInverse8x8_1 = dctInverse8x8_avx<1>;
|
|
dctInverse8x8_2 = dctInverse8x8_avx<2>;
|
|
dctInverse8x8_3 = dctInverse8x8_avx<3>;
|
|
dctInverse8x8_4 = dctInverse8x8_avx<4>;
|
|
dctInverse8x8_5 = dctInverse8x8_avx<5>;
|
|
dctInverse8x8_6 = dctInverse8x8_avx<6>;
|
|
dctInverse8x8_7 = dctInverse8x8_avx<7>;
|
|
}
|
|
else if (cpuId.sse2)
|
|
{
|
|
dctInverse8x8_0 = dctInverse8x8_sse2<0>;
|
|
dctInverse8x8_1 = dctInverse8x8_sse2<1>;
|
|
dctInverse8x8_2 = dctInverse8x8_sse2<2>;
|
|
dctInverse8x8_3 = dctInverse8x8_sse2<3>;
|
|
dctInverse8x8_4 = dctInverse8x8_sse2<4>;
|
|
dctInverse8x8_5 = dctInverse8x8_sse2<5>;
|
|
dctInverse8x8_6 = dctInverse8x8_sse2<6>;
|
|
dctInverse8x8_7 = dctInverse8x8_sse2<7>;
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Handle channel classification and buffer allocation once we know
|
|
// how to classify channels
|
|
//
|
|
|
|
void
|
|
DwaCompressor::initializeBuffers (size_t &outBufferSize)
|
|
{
|
|
classifyChannels (_channels, _channelData, _cscSets);
|
|
|
|
//
|
|
// _outBuffer needs to be big enough to hold all our
|
|
// compressed data - which could vary depending on what sort
|
|
// of channels we have.
|
|
//
|
|
|
|
int maxOutBufferSize = 0;
|
|
int numLossyDctChans = 0;
|
|
int unknownBufferSize = 0;
|
|
int rleBufferSize = 0;
|
|
|
|
int maxLossyDctAcSize = (int)ceil ((float)numScanLines() / 8.0f) *
|
|
(int)ceil ((float)(_max[0] - _min[0] + 1) / 8.0f) *
|
|
63 * sizeof (unsigned short);
|
|
|
|
int maxLossyDctDcSize = (int)ceil ((float)numScanLines() / 8.0f) *
|
|
(int)ceil ((float)(_max[0] - _min[0] + 1) / 8.0f) *
|
|
sizeof (unsigned short);
|
|
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
{
|
|
switch (_channelData[chan].compression)
|
|
{
|
|
case LOSSY_DCT:
|
|
|
|
//
|
|
// This is the size of the number of packed
|
|
// components, plus the requirements for
|
|
// maximum Huffman encoding size (for STATIC_HUFFMAN)
|
|
// or for zlib compression (for DEFLATE)
|
|
//
|
|
|
|
maxOutBufferSize += std::max(
|
|
(int)(2 * maxLossyDctAcSize + 65536),
|
|
(int)compressBound (maxLossyDctAcSize) );
|
|
numLossyDctChans++;
|
|
break;
|
|
|
|
case RLE:
|
|
{
|
|
//
|
|
// RLE, if gone horribly wrong, could double the size
|
|
// of the source data.
|
|
//
|
|
|
|
int rleAmount = 2 * numScanLines() * (_max[0] - _min[0] + 1) *
|
|
OPENEXR_IMF_NAMESPACE::pixelTypeSize (_channelData[chan].type);
|
|
|
|
rleBufferSize += rleAmount;
|
|
}
|
|
break;
|
|
|
|
|
|
case UNKNOWN:
|
|
|
|
unknownBufferSize += numScanLines() * (_max[0] - _min[0] + 1) *
|
|
OPENEXR_IMF_NAMESPACE::pixelTypeSize (_channelData[chan].type);
|
|
break;
|
|
|
|
default:
|
|
|
|
throw IEX_NAMESPACE::NoImplExc ("Unhandled compression scheme case");
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Also, since the results of the RLE are packed into
|
|
// the output buffer, we need the extra room there. But
|
|
// we're going to zlib compress() the data we pack,
|
|
// which could take slightly more space
|
|
//
|
|
|
|
maxOutBufferSize += (int)compressBound ((uLongf)rleBufferSize);
|
|
|
|
//
|
|
// And the same goes for the UNKNOWN data
|
|
//
|
|
|
|
maxOutBufferSize += (int)compressBound ((uLongf)unknownBufferSize);
|
|
|
|
//
|
|
// Allocate a zip/deflate compressor big enought to hold the DC data
|
|
// and include it's compressed results in the size requirements
|
|
// for our output buffer
|
|
//
|
|
|
|
if (_zip == 0)
|
|
_zip = new Zip (maxLossyDctDcSize * numLossyDctChans);
|
|
else if (_zip->maxRawSize() < maxLossyDctDcSize * numLossyDctChans)
|
|
{
|
|
delete _zip;
|
|
_zip = new Zip (maxLossyDctDcSize * numLossyDctChans);
|
|
}
|
|
|
|
|
|
maxOutBufferSize += _zip->maxCompressedSize();
|
|
|
|
//
|
|
// We also need to reserve space at the head of the buffer to
|
|
// write out the size of our various packed and compressed data.
|
|
//
|
|
|
|
maxOutBufferSize += NUM_SIZES_SINGLE * sizeof (Int64);
|
|
|
|
|
|
//
|
|
// Later, we're going to hijack outBuffer for the result of
|
|
// both encoding and decoding. So it needs to be big enough
|
|
// to hold either a buffers' worth of uncompressed or
|
|
// compressed data
|
|
//
|
|
// For encoding, we'll need _outBuffer to hold maxOutBufferSize bytes,
|
|
// but for decoding, we only need it to be maxScanLineSize*numScanLines.
|
|
// Cache the max size for now, and alloc the buffer when we either
|
|
// encode or decode.
|
|
//
|
|
|
|
outBufferSize = maxOutBufferSize;
|
|
|
|
|
|
//
|
|
// _packedAcBuffer holds the quantized DCT coefficients prior
|
|
// to Huffman encoding
|
|
//
|
|
|
|
if (maxLossyDctAcSize * numLossyDctChans > _packedAcBufferSize)
|
|
{
|
|
_packedAcBufferSize = maxLossyDctAcSize * numLossyDctChans;
|
|
if (_packedAcBuffer != 0)
|
|
delete[] _packedAcBuffer;
|
|
_packedAcBuffer = new char[_packedAcBufferSize];
|
|
}
|
|
|
|
//
|
|
// _packedDcBuffer holds one quantized DCT coef per 8x8 block
|
|
//
|
|
|
|
if (maxLossyDctDcSize * numLossyDctChans > _packedDcBufferSize)
|
|
{
|
|
_packedDcBufferSize = maxLossyDctDcSize * numLossyDctChans;
|
|
if (_packedDcBuffer != 0)
|
|
delete[] _packedDcBuffer;
|
|
_packedDcBuffer = new char[_packedDcBufferSize];
|
|
}
|
|
|
|
if (rleBufferSize > _rleBufferSize)
|
|
{
|
|
_rleBufferSize = rleBufferSize;
|
|
if (_rleBuffer != 0)
|
|
delete[] _rleBuffer;
|
|
_rleBuffer = new char[rleBufferSize];
|
|
}
|
|
|
|
//
|
|
// The planar uncompressed buffer will hold float data for LOSSY_DCT
|
|
// compressed values, and whatever the native type is for other
|
|
// channels. We're going to use this to hold data in a planar
|
|
// format, as opposed to the native interleaved format we take
|
|
// into compress() and give back from uncompress().
|
|
//
|
|
// This also makes it easier to compress the UNKNOWN and RLE data
|
|
// all in one swoop (for each compression scheme).
|
|
//
|
|
|
|
int planarUncBufferSize[NUM_COMPRESSOR_SCHEMES];
|
|
for (int i=0; i<NUM_COMPRESSOR_SCHEMES; ++i)
|
|
planarUncBufferSize[i] = 0;
|
|
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
{
|
|
switch (_channelData[chan].compression)
|
|
{
|
|
case LOSSY_DCT:
|
|
break;
|
|
|
|
case RLE:
|
|
planarUncBufferSize[RLE] +=
|
|
numScanLines() * (_max[0] - _min[0] + 1) *
|
|
OPENEXR_IMF_NAMESPACE::pixelTypeSize (_channelData[chan].type);
|
|
break;
|
|
|
|
case UNKNOWN:
|
|
planarUncBufferSize[UNKNOWN] +=
|
|
numScanLines() * (_max[0] - _min[0] + 1) *
|
|
OPENEXR_IMF_NAMESPACE::pixelTypeSize (_channelData[chan].type);
|
|
break;
|
|
|
|
default:
|
|
throw IEX_NAMESPACE::NoImplExc ("Unhandled compression scheme case");
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// UNKNOWN data is going to be zlib compressed, which needs
|
|
// a little extra headroom
|
|
//
|
|
|
|
if (planarUncBufferSize[UNKNOWN] > 0)
|
|
{
|
|
planarUncBufferSize[UNKNOWN] =
|
|
compressBound ((uLongf)planarUncBufferSize[UNKNOWN]);
|
|
}
|
|
|
|
for (int i = 0; i < NUM_COMPRESSOR_SCHEMES; ++i)
|
|
{
|
|
if (planarUncBufferSize[i] > _planarUncBufferSize[i])
|
|
{
|
|
_planarUncBufferSize[i] = planarUncBufferSize[i];
|
|
if (_planarUncBuffer[i] != 0)
|
|
delete[] _planarUncBuffer[i];
|
|
_planarUncBuffer[i] = new char[planarUncBufferSize[i]];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Setup channel classification rules to use when writing files
|
|
//
|
|
|
|
void
|
|
DwaCompressor::initializeDefaultChannelRules ()
|
|
{
|
|
_channelRules.clear();
|
|
|
|
_channelRules.push_back (Classifier ("R", LOSSY_DCT, HALF, 0, false));
|
|
_channelRules.push_back (Classifier ("R", LOSSY_DCT, FLOAT, 0, false));
|
|
_channelRules.push_back (Classifier ("G", LOSSY_DCT, HALF, 1, false));
|
|
_channelRules.push_back (Classifier ("G", LOSSY_DCT, FLOAT, 1, false));
|
|
_channelRules.push_back (Classifier ("B", LOSSY_DCT, HALF, 2, false));
|
|
_channelRules.push_back (Classifier ("B", LOSSY_DCT, FLOAT, 2, false));
|
|
|
|
_channelRules.push_back (Classifier ("Y", LOSSY_DCT, HALF, -1, false));
|
|
_channelRules.push_back (Classifier ("Y", LOSSY_DCT, FLOAT, -1, false));
|
|
_channelRules.push_back (Classifier ("BY", LOSSY_DCT, HALF, -1, false));
|
|
_channelRules.push_back (Classifier ("BY", LOSSY_DCT, FLOAT, -1, false));
|
|
_channelRules.push_back (Classifier ("RY", LOSSY_DCT, HALF, -1, false));
|
|
_channelRules.push_back (Classifier ("RY", LOSSY_DCT, FLOAT, -1, false));
|
|
|
|
_channelRules.push_back (Classifier ("A", RLE, UINT, -1, false));
|
|
_channelRules.push_back (Classifier ("A", RLE, HALF, -1, false));
|
|
_channelRules.push_back (Classifier ("A", RLE, FLOAT, -1, false));
|
|
}
|
|
|
|
|
|
//
|
|
// Setup channel classification rules when reading files with VERSION < 2
|
|
//
|
|
|
|
void
|
|
DwaCompressor::initializeLegacyChannelRules ()
|
|
{
|
|
_channelRules.clear();
|
|
|
|
_channelRules.push_back (Classifier ("r", LOSSY_DCT, HALF, 0, true));
|
|
_channelRules.push_back (Classifier ("r", LOSSY_DCT, FLOAT, 0, true));
|
|
_channelRules.push_back (Classifier ("red", LOSSY_DCT, HALF, 0, true));
|
|
_channelRules.push_back (Classifier ("red", LOSSY_DCT, FLOAT, 0, true));
|
|
_channelRules.push_back (Classifier ("g", LOSSY_DCT, HALF, 1, true));
|
|
_channelRules.push_back (Classifier ("g", LOSSY_DCT, FLOAT, 1, true));
|
|
_channelRules.push_back (Classifier ("grn", LOSSY_DCT, HALF, 1, true));
|
|
_channelRules.push_back (Classifier ("grn", LOSSY_DCT, FLOAT, 1, true));
|
|
_channelRules.push_back (Classifier ("green", LOSSY_DCT, HALF, 1, true));
|
|
_channelRules.push_back (Classifier ("green", LOSSY_DCT, FLOAT, 1, true));
|
|
_channelRules.push_back (Classifier ("b", LOSSY_DCT, HALF, 2, true));
|
|
_channelRules.push_back (Classifier ("b", LOSSY_DCT, FLOAT, 2, true));
|
|
_channelRules.push_back (Classifier ("blu", LOSSY_DCT, HALF, 2, true));
|
|
_channelRules.push_back (Classifier ("blu", LOSSY_DCT, FLOAT, 2, true));
|
|
_channelRules.push_back (Classifier ("blue", LOSSY_DCT, HALF, 2, true));
|
|
_channelRules.push_back (Classifier ("blue", LOSSY_DCT, FLOAT, 2, true));
|
|
|
|
_channelRules.push_back (Classifier ("y", LOSSY_DCT, HALF, -1, true));
|
|
_channelRules.push_back (Classifier ("y", LOSSY_DCT, FLOAT, -1, true));
|
|
_channelRules.push_back (Classifier ("by", LOSSY_DCT, HALF, -1, true));
|
|
_channelRules.push_back (Classifier ("by", LOSSY_DCT, FLOAT, -1, true));
|
|
_channelRules.push_back (Classifier ("ry", LOSSY_DCT, HALF, -1, true));
|
|
_channelRules.push_back (Classifier ("ry", LOSSY_DCT, FLOAT, -1, true));
|
|
_channelRules.push_back (Classifier ("a", RLE, UINT, -1, true));
|
|
_channelRules.push_back (Classifier ("a", RLE, HALF, -1, true));
|
|
_channelRules.push_back (Classifier ("a", RLE, FLOAT, -1, true));
|
|
}
|
|
|
|
|
|
//
|
|
// Given a set of rules and ChannelData, figure out which rules apply
|
|
//
|
|
|
|
void
|
|
DwaCompressor::relevantChannelRules (std::vector<Classifier> &rules) const
|
|
{
|
|
rules.clear();
|
|
|
|
std::vector<std::string> suffixes;
|
|
|
|
for (size_t cd = 0; cd < _channelData.size(); ++cd)
|
|
{
|
|
std::string suffix = _channelData[cd].name;
|
|
size_t lastDot = suffix.find_last_of ('.');
|
|
|
|
if (lastDot != std::string::npos)
|
|
suffix = suffix.substr (lastDot+1, std::string::npos);
|
|
|
|
suffixes.push_back(suffix);
|
|
}
|
|
|
|
|
|
for (size_t i = 0; i < _channelRules.size(); ++i)
|
|
{
|
|
for (size_t cd = 0; cd < _channelData.size(); ++cd)
|
|
{
|
|
if (_channelRules[i].match (suffixes[cd], _channelData[cd].type ))
|
|
{
|
|
rules.push_back (_channelRules[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Take our initial list of channels, and cache the contents.
|
|
//
|
|
// Determine approprate compression schemes for each channel,
|
|
// and figure out which sets should potentially be CSC'ed
|
|
// prior to lossy compression.
|
|
//
|
|
|
|
void
|
|
DwaCompressor::classifyChannels
|
|
(ChannelList channels,
|
|
std::vector<ChannelData> &chanData,
|
|
std::vector<CscChannelSet> &cscData)
|
|
{
|
|
//
|
|
// prefixMap used to map channel name prefixes to
|
|
// potential CSC-able sets of channels.
|
|
//
|
|
|
|
std::map<std::string, DwaCompressor::CscChannelSet> prefixMap;
|
|
std::vector<DwaCompressor::CscChannelSet> tmpCscSet;
|
|
|
|
unsigned int numChan = 0;
|
|
|
|
for (ChannelList::Iterator c = channels.begin(); c != channels.end(); ++c)
|
|
numChan++;
|
|
|
|
if (numChan)
|
|
chanData.resize (numChan);
|
|
|
|
//
|
|
// Cache the relevant data from the channel structs.
|
|
//
|
|
|
|
unsigned int offset = 0;
|
|
|
|
for (ChannelList::Iterator c = channels.begin(); c != channels.end(); ++c)
|
|
{
|
|
chanData[offset].name = std::string (c.name());
|
|
chanData[offset].compression = UNKNOWN;
|
|
chanData[offset].xSampling = c.channel().xSampling;
|
|
chanData[offset].ySampling = c.channel().ySampling;
|
|
chanData[offset].type = c.channel().type;
|
|
chanData[offset].pLinear = c.channel().pLinear;
|
|
|
|
offset++;
|
|
}
|
|
|
|
//
|
|
// Try and figure out which channels should be
|
|
// compressed by which means.
|
|
//
|
|
|
|
for (offset = 0; offset<numChan; ++offset)
|
|
{
|
|
std::string prefix = "";
|
|
std::string suffix = chanData[offset].name;
|
|
size_t lastDot = suffix.find_last_of ('.');
|
|
|
|
if (lastDot != std::string::npos)
|
|
{
|
|
prefix = suffix.substr (0, lastDot);
|
|
suffix = suffix.substr (lastDot+1, std::string::npos);
|
|
}
|
|
|
|
//
|
|
// Make sure we have an entry in our CSC set map
|
|
//
|
|
|
|
std::map<std::string, DwaCompressor::CscChannelSet>::iterator
|
|
theSet = prefixMap.find (prefix);
|
|
|
|
if (theSet == prefixMap.end())
|
|
{
|
|
DwaCompressor::CscChannelSet tmpSet;
|
|
|
|
tmpSet.idx[0] =
|
|
tmpSet.idx[1] =
|
|
tmpSet.idx[2] = -1;
|
|
|
|
prefixMap[prefix] = tmpSet;
|
|
}
|
|
|
|
//
|
|
// Check the suffix against the list of classifications
|
|
// we defined previously. If the _cscIdx is not negative,
|
|
// it indicates that we should be part of a CSC group.
|
|
//
|
|
|
|
for (std::vector<Classifier>::iterator i = _channelRules.begin();
|
|
i != _channelRules.end();
|
|
++i)
|
|
{
|
|
if ( i->match(suffix, chanData[offset].type) )
|
|
{
|
|
chanData[offset].compression = i->_scheme;
|
|
|
|
if ( i->_cscIdx >= 0)
|
|
prefixMap[prefix].idx[i->_cscIdx] = offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Finally, try and find RGB sets of channels which
|
|
// can be CSC'ed to a Y'CbCr space prior to loss, for
|
|
// better compression.
|
|
//
|
|
// Walk over our set of candidates, and see who has
|
|
// all three channels defined (and has common sampling
|
|
// patterns, etc).
|
|
//
|
|
|
|
for (std::map<std::string, DwaCompressor::CscChannelSet>::iterator
|
|
theItem = prefixMap.begin(); theItem != prefixMap.end();
|
|
++theItem)
|
|
{
|
|
int red = (*theItem).second.idx[0];
|
|
int grn = (*theItem).second.idx[1];
|
|
int blu = (*theItem).second.idx[2];
|
|
|
|
if ((red < 0) || (grn < 0) || (blu < 0))
|
|
continue;
|
|
|
|
if ((chanData[red].xSampling != chanData[grn].xSampling) ||
|
|
(chanData[red].xSampling != chanData[blu].xSampling) ||
|
|
(chanData[grn].xSampling != chanData[blu].xSampling) ||
|
|
(chanData[red].ySampling != chanData[grn].ySampling) ||
|
|
(chanData[red].ySampling != chanData[blu].ySampling) ||
|
|
(chanData[grn].ySampling != chanData[blu].ySampling))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
tmpCscSet.push_back ((*theItem).second);
|
|
}
|
|
|
|
size_t numCsc = tmpCscSet.size();
|
|
|
|
if (numCsc)
|
|
cscData.resize(numCsc);
|
|
|
|
for (offset = 0; offset < numCsc; ++offset)
|
|
cscData[offset] = tmpCscSet[offset];
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// Setup some buffer pointers, determine channel sizes, things
|
|
// like that.
|
|
//
|
|
|
|
void
|
|
DwaCompressor::setupChannelData (int minX, int minY, int maxX, int maxY)
|
|
{
|
|
char *planarUncBuffer[NUM_COMPRESSOR_SCHEMES];
|
|
|
|
for (int i=0; i<NUM_COMPRESSOR_SCHEMES; ++i)
|
|
{
|
|
planarUncBuffer[i] = 0;
|
|
|
|
if (_planarUncBuffer[i])
|
|
planarUncBuffer[i] = _planarUncBuffer[i];
|
|
}
|
|
|
|
for (unsigned int chan = 0; chan < _channelData.size(); ++chan)
|
|
{
|
|
ChannelData *cd = &_channelData[chan];
|
|
|
|
cd->width = OPENEXR_IMF_NAMESPACE::numSamples (cd->xSampling, minX, maxX);
|
|
cd->height = OPENEXR_IMF_NAMESPACE::numSamples (cd->ySampling, minY, maxY);
|
|
|
|
cd->planarUncSize =
|
|
cd->width * cd->height * OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->type);
|
|
|
|
cd->planarUncBuffer = planarUncBuffer[cd->compression];
|
|
cd->planarUncBufferEnd = cd->planarUncBuffer;
|
|
|
|
cd->planarUncRle[0] = cd->planarUncBuffer;
|
|
cd->planarUncRleEnd[0] = cd->planarUncRle[0];
|
|
|
|
for (int byte = 1; byte < OPENEXR_IMF_NAMESPACE::pixelTypeSize(cd->type); ++byte)
|
|
{
|
|
cd->planarUncRle[byte] =
|
|
cd->planarUncRle[byte-1] + cd->width * cd->height;
|
|
|
|
cd->planarUncRleEnd[byte] =
|
|
cd->planarUncRle[byte];
|
|
}
|
|
|
|
cd->planarUncType = cd->type;
|
|
|
|
if (cd->compression == LOSSY_DCT)
|
|
{
|
|
cd->planarUncType = FLOAT;
|
|
}
|
|
else
|
|
{
|
|
planarUncBuffer[cd->compression] +=
|
|
cd->width * cd->height * OPENEXR_IMF_NAMESPACE::pixelTypeSize (cd->planarUncType);
|
|
}
|
|
}
|
|
}
|
|
|
|
OPENEXR_IMF_INTERNAL_NAMESPACE_SOURCE_EXIT
|