39 lines
1.1 KiB
Python
39 lines
1.1 KiB
Python
#!/usr/bin/python
|
|
|
|
import sys
|
|
import os
|
|
|
|
import cv2 as cv
|
|
import numpy as np
|
|
|
|
print('\ndetect_er_chars.py')
|
|
print(' A simple demo script using the Extremal Region Filter algorithm described in:')
|
|
print(' Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012\n')
|
|
|
|
|
|
if (len(sys.argv) < 2):
|
|
print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n')
|
|
quit()
|
|
|
|
pathname = os.path.dirname(sys.argv[0])
|
|
|
|
img = cv.imread(str(sys.argv[1]))
|
|
gray = cv.imread(str(sys.argv[1]),0)
|
|
|
|
erc1 = cv.text.loadClassifierNM1(pathname+'/trained_classifierNM1.xml')
|
|
er1 = cv.text.createERFilterNM1(erc1)
|
|
|
|
erc2 = cv.text.loadClassifierNM2(pathname+'/trained_classifierNM2.xml')
|
|
er2 = cv.text.createERFilterNM2(erc2)
|
|
|
|
regions = cv.text.detectRegions(gray,er1,er2)
|
|
|
|
#Visualization
|
|
rects = [cv.boundingRect(p.reshape(-1, 1, 2)) for p in regions]
|
|
for rect in rects:
|
|
cv.rectangle(img, rect[0:2], (rect[0]+rect[2],rect[1]+rect[3]), (0, 0, 0), 2)
|
|
for rect in rects:
|
|
cv.rectangle(img, rect[0:2], (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1)
|
|
cv.imshow("Text detection result", img)
|
|
cv.waitKey(0)
|