359 lines
12 KiB
C++
359 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2015, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
const string STRUCTURED_LIGHT_DIR = "structured_light";
|
|
const string FOLDER_DATA = "data";
|
|
|
|
/****************************************************************************************\
|
|
* Plane test *
|
|
\****************************************************************************************/
|
|
class CV_PlaneTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_PlaneTest();
|
|
~CV_PlaneTest();
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// From rgbd module: since I needed the distance method of plane class, I copied the class from rgb module
|
|
// it will be made a pull request to make Plane class public
|
|
|
|
/** Structure defining a plane. The notations are from the second paper */
|
|
class PlaneBase
|
|
{
|
|
public:
|
|
PlaneBase(const Vec3f & m, const Vec3f &n_in, int index) :
|
|
index_(index),
|
|
n_(n_in),
|
|
m_sum_(Vec3f(0, 0, 0)),
|
|
m_(m),
|
|
Q_(Matx33f::zeros()),
|
|
mse_(0),
|
|
K_(0)
|
|
{
|
|
UpdateD();
|
|
}
|
|
|
|
virtual ~PlaneBase()
|
|
{
|
|
}
|
|
|
|
/** Compute the distance to the plane. This will be implemented by the children to take into account different
|
|
* sensor models
|
|
* @param p_j
|
|
* @return
|
|
*/
|
|
virtual
|
|
float
|
|
distance(const Vec3f& p_j) const = 0;
|
|
|
|
/** The d coefficient in the plane equation ax+by+cz+d = 0
|
|
* @return
|
|
*/
|
|
inline float d() const
|
|
{
|
|
return d_;
|
|
}
|
|
|
|
/** The normal to the plane
|
|
* @return the normal to the plane
|
|
*/
|
|
const Vec3f &
|
|
n() const
|
|
{
|
|
return n_;
|
|
}
|
|
|
|
/** Update the different coefficients of the plane, based on the new statistics
|
|
*/
|
|
void UpdateParameters()
|
|
{
|
|
if( empty() )
|
|
return;
|
|
m_ = m_sum_ / K_;
|
|
// Compute C
|
|
Matx33f C = Q_ - m_sum_ * m_.t();
|
|
|
|
// Compute n
|
|
SVD svd(C);
|
|
n_ = Vec3f(svd.vt.at<float>(2, 0), svd.vt.at<float>(2, 1), svd.vt.at<float>(2, 2));
|
|
mse_ = svd.w.at<float>(2) / K_;
|
|
|
|
UpdateD();
|
|
}
|
|
|
|
/** Update the different sum of point and sum of point*point.t()
|
|
*/
|
|
void UpdateStatistics(const Vec3f & point, const Matx33f & Q_local)
|
|
{
|
|
m_sum_ += point;
|
|
Q_ += Q_local;
|
|
++K_;
|
|
}
|
|
|
|
inline size_t empty() const
|
|
{
|
|
return K_ == 0;
|
|
}
|
|
|
|
inline int K() const
|
|
{
|
|
return K_;
|
|
}
|
|
/** The index of the plane */
|
|
int index_;
|
|
protected:
|
|
/** The 4th coefficient in the plane equation ax+by+cz+d = 0 */
|
|
float d_;
|
|
/** Normal of the plane */
|
|
Vec3f n_;
|
|
private:
|
|
inline void UpdateD()
|
|
{
|
|
// Hessian form (d = nc . p_plane (centroid here) + p)
|
|
//d = -1 * n.dot (xyz_centroid);//d =-axP+byP+czP
|
|
d_ = -m_.dot(n_);
|
|
}
|
|
/** The sum of the points */
|
|
Vec3f m_sum_;
|
|
/** The mean of the points */
|
|
Vec3f m_;
|
|
/** The sum of pi * pi^\top */
|
|
Matx33f Q_;
|
|
/** The different matrices we need to update */
|
|
Matx33f C_;
|
|
float mse_;
|
|
/** the number of points that form the plane */
|
|
int K_;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/** Basic planar child, with no sensor error model
|
|
*/
|
|
class Plane : public PlaneBase
|
|
{
|
|
public:
|
|
Plane(const Vec3f & m, const Vec3f &n_in, int index) :
|
|
PlaneBase(m, n_in, index)
|
|
{
|
|
}
|
|
|
|
/** The computed distance is perfect in that case
|
|
* @param p_j the point to compute its distance to
|
|
* @return
|
|
*/
|
|
float distance(const Vec3f& p_j) const
|
|
{
|
|
return std::abs(float(p_j.dot(n_) + d_));
|
|
}
|
|
};
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
protected:
|
|
void run( int );
|
|
|
|
};
|
|
|
|
CV_PlaneTest::CV_PlaneTest(){}
|
|
|
|
CV_PlaneTest::~CV_PlaneTest(){}
|
|
|
|
void CV_PlaneTest::run( int )
|
|
{
|
|
string folder = cvtest::TS::ptr()->get_data_path() + "/" + STRUCTURED_LIGHT_DIR + "/" + FOLDER_DATA + "/";
|
|
structured_light::GrayCodePattern::Params params;
|
|
params.width = 1280;
|
|
params.height = 800;
|
|
// Set up GraycodePattern with params
|
|
Ptr<structured_light::GrayCodePattern> graycode = structured_light::GrayCodePattern::create( params );
|
|
size_t numberOfPatternImages = graycode->getNumberOfPatternImages();
|
|
|
|
|
|
FileStorage fs( folder + "calibrationParameters.yml", FileStorage::READ );
|
|
if( !fs.isOpened() )
|
|
{
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
}
|
|
|
|
FileStorage fs2( folder + "gt_plane.yml", FileStorage::READ );
|
|
if( !fs.isOpened() )
|
|
{
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
}
|
|
|
|
// Loading ground truth plane parameters
|
|
Vec4f plane_coefficients;
|
|
Vec3f m;
|
|
fs2["plane_coefficients"] >> plane_coefficients;
|
|
fs2["m"] >> m;
|
|
|
|
// Loading calibration parameters
|
|
Mat cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, R, T;
|
|
|
|
fs["cam1_intrinsics"] >> cam1intrinsics;
|
|
fs["cam2_intrinsics"] >> cam2intrinsics;
|
|
fs["cam1_distorsion"] >> cam1distCoeffs;
|
|
fs["cam2_distorsion"] >> cam2distCoeffs;
|
|
fs["R"] >> R;
|
|
fs["T"] >> T;
|
|
|
|
// Loading white and black images
|
|
vector<Mat> blackImages;
|
|
vector<Mat> whiteImages;
|
|
|
|
blackImages.resize( 2 );
|
|
whiteImages.resize( 2 );
|
|
|
|
whiteImages[0] = imread( folder + "pattern_cam1_im43.jpg", 0 );
|
|
whiteImages[1] = imread( folder + "pattern_cam2_im43.jpg", 0 );
|
|
blackImages[0] = imread( folder + "pattern_cam1_im44.jpg", 0 );
|
|
blackImages[1] = imread( folder + "pattern_cam2_im44.jpg", 0 );
|
|
|
|
Size imagesSize = whiteImages[0].size();
|
|
|
|
if( ( !cam1intrinsics.data ) || ( !cam2intrinsics.data ) || ( !cam1distCoeffs.data ) || ( !cam2distCoeffs.data ) || ( !R.data )
|
|
|| ( !T.data ) || ( !whiteImages[0].data ) || ( !whiteImages[1].data ) || ( !blackImages[0].data )
|
|
|| ( !blackImages[1].data ) )
|
|
{
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
}
|
|
|
|
// Computing stereo rectify parameters
|
|
Mat R1, R2, P1, P2, Q;
|
|
Rect validRoi[2];
|
|
stereoRectify( cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, imagesSize, R, T, R1, R2, P1, P2, Q, 0,
|
|
-1, imagesSize, &validRoi[0], &validRoi[1] );
|
|
|
|
Mat map1x, map1y, map2x, map2y;
|
|
initUndistortRectifyMap( cam1intrinsics, cam1distCoeffs, R1, P1, imagesSize, CV_32FC1, map1x, map1y );
|
|
initUndistortRectifyMap( cam2intrinsics, cam2distCoeffs, R2, P2, imagesSize, CV_32FC1, map2x, map2y );
|
|
|
|
vector<vector<Mat> > captured_pattern;
|
|
captured_pattern.resize( 2 );
|
|
captured_pattern[0].resize( numberOfPatternImages );
|
|
captured_pattern[1].resize( numberOfPatternImages );
|
|
|
|
// Loading and rectifying pattern images
|
|
for( size_t i = 0; i < numberOfPatternImages; i++ )
|
|
{
|
|
std::ostringstream name1;
|
|
name1 << "pattern_cam1_im" << i + 1 << ".jpg";
|
|
captured_pattern[0][i] = imread( folder + name1.str(), 0 );
|
|
std::ostringstream name2;
|
|
name2 << "pattern_cam2_im" << i + 1 << ".jpg";
|
|
captured_pattern[1][i] = imread( folder + name2.str(), 0 );
|
|
|
|
if( (!captured_pattern[0][i].data) || (!captured_pattern[1][i].data) )
|
|
{
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
}
|
|
|
|
remap( captured_pattern[0][i], captured_pattern[0][i], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
|
|
remap( captured_pattern[1][i], captured_pattern[1][i], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
|
|
}
|
|
|
|
// Rectifying white and black images
|
|
remap( whiteImages[0], whiteImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
|
|
remap( whiteImages[1], whiteImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
|
|
|
|
remap( blackImages[0], blackImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
|
|
remap( blackImages[1], blackImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
|
|
|
|
// Setting up threshold parameters to reconstruct only the plane in foreground
|
|
graycode->setBlackThreshold( 55 );
|
|
graycode->setWhiteThreshold( 10 );
|
|
|
|
// Computing the disparity map
|
|
Mat disparityMap;
|
|
bool decoded = graycode->decode( captured_pattern, disparityMap, blackImages, whiteImages,
|
|
structured_light::DECODE_3D_UNDERWORLD );
|
|
EXPECT_TRUE( decoded );
|
|
|
|
// Computing the point cloud
|
|
Mat pointcloud;
|
|
disparityMap.convertTo( disparityMap, CV_32FC1 );
|
|
reprojectImageTo3D( disparityMap, pointcloud, Q, true, -1 );
|
|
// from mm (unit of calibration) to m
|
|
pointcloud = pointcloud / 1000;
|
|
|
|
// Setting up plane with ground truth plane values
|
|
Vec3f normal( plane_coefficients.val[0], plane_coefficients.val[1], plane_coefficients.val[2] );
|
|
Ptr<PlaneBase> plane = Ptr<PlaneBase>( new Plane( m, normal, 0 ) );
|
|
|
|
// Computing the distance of every point of the pointcloud from ground truth plane
|
|
float sum_d = 0;
|
|
int cont = 0;
|
|
for( int i = 0; i < disparityMap.rows; i++ )
|
|
{
|
|
for( int j = 0; j < disparityMap.cols; j++ )
|
|
{
|
|
float value = disparityMap.at<float>( i, j );
|
|
if( value != 0 )
|
|
{
|
|
Vec3f point = pointcloud.at<Vec3f>( i, j );
|
|
sum_d += plane->distance( point );
|
|
cont++;
|
|
}
|
|
}
|
|
}
|
|
|
|
sum_d /= cont;
|
|
|
|
// test pass if the mean of points distance from ground truth plane is lower than 3 mm
|
|
EXPECT_LE( sum_d, 0.003 );
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Test registration *
|
|
\****************************************************************************************/
|
|
|
|
TEST( GrayCodePattern, plane_reconstruction )
|
|
{
|
|
CV_PlaneTest test;
|
|
test.safe_run();
|
|
}
|
|
|
|
}} // namespace
|