OpenCV_4.2.0/opencv_contrib-4.2.0/modules/structured_light/samples/projectorcalibration.cpp

517 lines
18 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2015, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/highgui.hpp>
#include <vector>
#include <iostream>
#include <fstream>
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/calib3d.hpp>
using namespace std;
using namespace cv;
static const char* keys =
{
"{@camSettingsPath | | Path of camera calibration file}"
"{@projSettingsPath | | Path of projector settings}"
"{@patternPath | | Path to checkerboard pattern}"
"{@outputName | | Base name for the calibration data}"
};
static void help()
{
cout << "\nThis example calibrates a camera and a projector" << endl;
cout << "To call: ./example_structured_light_projectorcalibration <cam_settings_path> "
" <proj_settings_path> <chessboard_path> <calibration_basename>"
" cam settings are parameters about the chessboard that needs to be detected to"
" calibrate the camera and proj setting are the same kind of parameters about the chessboard"
" that needs to be detected to calibrate the projector" << endl;
}
enum calibrationPattern{ CHESSBOARD, CIRCLES_GRID, ASYMETRIC_CIRCLES_GRID };
struct Settings
{
Settings();
int patternType;
Size patternSize;
Size subpixelSize;
Size imageSize;
float squareSize;
int nbrOfFrames;
};
void loadSettings( String path, Settings &sttngs );
void createObjectPoints( vector<Point3f> &patternCorners, Size patternSize, float squareSize,
int patternType );
void createProjectorObjectPoints( vector<Point2f> &patternCorners, Size patternSize, float squareSize,
int patternType );
double calibrate( vector< vector<Point3f> > objPoints, vector< vector<Point2f> > imgPoints,
Mat &cameraMatrix, Mat &distCoeffs, vector<Mat> &r, vector<Mat> &t, Size imgSize );
void fromCamToWorld( Mat cameraMatrix, vector<Mat> rV, vector<Mat> tV,
vector< vector<Point2f> > imgPoints, vector< vector<Point3f> > &worldPoints );
void saveCalibrationResults( String path, Mat camK, Mat camDistCoeffs, Mat projK, Mat projDistCoeffs,
Mat fundamental );
void saveCalibrationData( String path, vector<Mat> T1, vector<Mat> T2, vector<Mat> ptsProjCam, vector<Mat> ptsProjProj, vector<Mat> ptsProjCamN, vector<Mat> ptsProjProjN);
void normalize(const Mat &pts, const int& dim, Mat& normpts, Mat &T);
void fromVectorToMat( vector<Point2f> v, Mat &pts);
void fromMatToVector( Mat pts, vector<Point2f> &v );
int main( int argc, char **argv )
{
VideoCapture cap(CAP_PVAPI);
Mat frame;
int nbrOfValidFrames = 0;
vector< vector<Point2f> > imagePointsCam, imagePointsProj, PointsInProj, imagePointsProjN, pointsInProjN;
vector< vector<Point3f> > objectPointsCam, worldPointsProj;
vector<Point3f> tempCam;
vector<Point2f> tempProj;
vector<Mat> T1, T2;
vector<Mat> projInProj, projInCam;
vector<Mat> projInProjN, projInCamN;
vector<Mat> rVecs, tVecs, projectorRVecs, projectorTVecs;
Mat cameraMatrix, distCoeffs, projectorMatrix, projectorDistCoeffs;
Mat pattern;
vector<Mat> images;
Settings camSettings, projSettings;
CommandLineParser parser(argc, argv, keys);
String camSettingsPath = parser.get<String>(0);
String projSettingsPath = parser.get<String>(1);
String patternPath = parser.get<String>(2);
String outputName = parser.get<String>(3);
if( camSettingsPath.empty() || projSettingsPath.empty() || patternPath.empty() || outputName.empty() ){
help();
return -1;
}
pattern = imread(patternPath);
loadSettings(camSettingsPath, camSettings);
loadSettings(projSettingsPath, projSettings);
projSettings.imageSize = Size(pattern.rows, pattern.cols);
createObjectPoints(tempCam, camSettings.patternSize,
camSettings.squareSize, camSettings.patternType);
createProjectorObjectPoints(tempProj, projSettings.patternSize,
projSettings.squareSize, projSettings.patternType);
if(!cap.isOpened())
{
cout << "Camera could not be opened" << endl;
return -1;
}
cap.set(CAP_PROP_PVAPI_PIXELFORMAT, CAP_PVAPI_PIXELFORMAT_BAYER8);
namedWindow("pattern", WINDOW_NORMAL);
setWindowProperty("pattern", WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);
namedWindow("camera view", WINDOW_NORMAL);
imshow("pattern", pattern);
cout << "Press any key when ready" << endl;
waitKey(0);
while( nbrOfValidFrames < camSettings.nbrOfFrames )
{
cap >> frame;
if( frame.data )
{
Mat color;
cvtColor(frame, color, COLOR_BayerBG2BGR);
if( camSettings.imageSize.height == 0 || camSettings.imageSize.width == 0 )
{
camSettings.imageSize = Size(frame.rows, frame.cols);
}
bool foundProj, foundCam;
vector<Point2f> projPointBuf;
vector<Point2f> camPointBuf;
imshow("camera view", color);
if( camSettings.patternType == CHESSBOARD && projSettings.patternType == CHESSBOARD )
{
int calibFlags = CALIB_CB_ADAPTIVE_THRESH;
foundCam = findChessboardCorners(color, camSettings.patternSize,
camPointBuf, calibFlags);
foundProj = findChessboardCorners(color, projSettings.patternSize,
projPointBuf, calibFlags);
if( foundCam && foundProj )
{
Mat gray;
cvtColor(color, gray, COLOR_BGR2GRAY);
cout << "found pattern" << endl;
Mat projCorners, camCorners;
cornerSubPix(gray, camPointBuf, camSettings.subpixelSize, Size(-1, -1),
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 0.1));
cornerSubPix(gray, projPointBuf, projSettings.subpixelSize, Size(-1, -1),
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 0.1));
drawChessboardCorners(gray, camSettings.patternSize, camPointBuf, foundCam);
drawChessboardCorners(gray, projSettings.patternSize, projPointBuf, foundProj);
imshow("camera view", gray);
char c = (char)waitKey(0);
if( c == 10 )
{
cout << "saving pattern #" << nbrOfValidFrames << " for calibration" << endl;
ostringstream name;
name << nbrOfValidFrames;
nbrOfValidFrames += 1;
imagePointsCam.push_back(camPointBuf);
imagePointsProj.push_back(projPointBuf);
objectPointsCam.push_back(tempCam);
PointsInProj.push_back(tempProj);
images.push_back(frame);
Mat ptsProjProj, ptsProjCam;
Mat ptsProjProjN, ptsProjCamN;
Mat TProjProj, TProjCam;
vector<Point2f> ptsProjProjVec;
vector<Point2f> ptsProjCamVec;
fromVectorToMat(tempProj, ptsProjProj);
normalize(ptsProjProj, 2, ptsProjProjN, TProjProj);
fromMatToVector(ptsProjProjN, ptsProjProjVec);
pointsInProjN.push_back(ptsProjProjVec);
T2.push_back(TProjProj);
projInProj.push_back(ptsProjProj);
projInProjN.push_back(ptsProjProjN);
fromVectorToMat(projPointBuf, ptsProjCam);
normalize(ptsProjCam, 2, ptsProjCamN, TProjCam);
fromMatToVector(ptsProjCamN, ptsProjCamVec);
imagePointsProjN.push_back(ptsProjCamVec);
T1.push_back(TProjCam);
projInCam.push_back(ptsProjCam);
projInCamN.push_back(ptsProjCamN);
}
else if( c == 32 )
{
cout << "capture discarded" << endl;
}
else if( c == 27 )
{
cout << "closing program" << endl;
return -1;
}
}
else
{
cout << "no pattern found, move board and press any key" << endl;
imshow("camera view", frame);
waitKey(0);
}
}
}
}
saveCalibrationData(outputName + "_points.yml", T1, T2, projInCam, projInProj, projInCamN, projInProjN);
double rms = calibrate(objectPointsCam, imagePointsCam, cameraMatrix, distCoeffs,
rVecs, tVecs, camSettings.imageSize);
cout << "rms = " << rms << endl;
cout << "camera matrix = \n" << cameraMatrix << endl;
cout << "dist coeffs = \n" << distCoeffs << endl;
fromCamToWorld(cameraMatrix, rVecs, tVecs, imagePointsProj, worldPointsProj);
rms = calibrate(worldPointsProj, PointsInProj, projectorMatrix, projectorDistCoeffs,
projectorRVecs, projectorTVecs, projSettings.imageSize);
cout << "rms = " << rms << endl;
cout << "projector matrix = \n" << projectorMatrix << endl;
cout << "projector dist coeffs = \n" << distCoeffs << endl;
Mat stereoR, stereoT, essential, fundamental;
Mat RCam, RProj, PCam, PProj, Q;
rms = stereoCalibrate(worldPointsProj, imagePointsProj, PointsInProj, cameraMatrix, distCoeffs,
projectorMatrix, projectorDistCoeffs, camSettings.imageSize, stereoR, stereoT,
essential, fundamental);
cout << "stereo calibrate: \n" << fundamental << endl;
saveCalibrationResults(outputName, cameraMatrix, distCoeffs, projectorMatrix, projectorDistCoeffs, fundamental );
return 0;
}
Settings::Settings(){
patternType = CHESSBOARD;
patternSize = Size(13, 9);
subpixelSize = Size(11, 11);
squareSize = 50;
nbrOfFrames = 25;
}
void loadSettings( String path, Settings &sttngs )
{
FileStorage fsInput(path, FileStorage::READ);
fsInput["PatternWidth"] >> sttngs.patternSize.width;
fsInput["PatternHeight"] >> sttngs.patternSize.height;
fsInput["SubPixelWidth"] >> sttngs.subpixelSize.width;
fsInput["SubPixelHeight"] >> sttngs.subpixelSize.height;
fsInput["SquareSize"] >> sttngs.squareSize;
fsInput["NbrOfFrames"] >> sttngs.nbrOfFrames;
fsInput["PatternType"] >> sttngs.patternType;
fsInput.release();
}
double calibrate( vector< vector<Point3f> > objPoints, vector< vector<Point2f> > imgPoints,
Mat &cameraMatrix, Mat &distCoeffs, vector<Mat> &r, vector<Mat> &t, Size imgSize )
{
int calibFlags = 0;
double rms = calibrateCamera(objPoints, imgPoints, imgSize, cameraMatrix,
distCoeffs, r, t, calibFlags);
return rms;
}
void createObjectPoints( vector<Point3f> &patternCorners, Size patternSize, float squareSize,
int patternType )
{
switch( patternType )
{
case CHESSBOARD:
case CIRCLES_GRID:
for( int i = 0; i < patternSize.height; ++i )
{
for( int j = 0; j < patternSize.width; ++j )
{
patternCorners.push_back(Point3f(float(i*squareSize), float(j*squareSize), 0));
}
}
break;
case ASYMETRIC_CIRCLES_GRID:
break;
}
}
void createProjectorObjectPoints( vector<Point2f> &patternCorners, Size patternSize, float squareSize,
int patternType )
{
switch( patternType )
{
case CHESSBOARD:
case CIRCLES_GRID:
for( int i = 1; i <= patternSize.height; ++i )
{
for( int j = 1; j <= patternSize.width; ++j )
{
patternCorners.push_back(Point2f(float(j*squareSize), float(i*squareSize)));
}
}
break;
case ASYMETRIC_CIRCLES_GRID:
break;
}
}
void fromCamToWorld( Mat cameraMatrix, vector<Mat> rV, vector<Mat> tV,
vector< vector<Point2f> > imgPoints, vector< vector<Point3f> > &worldPoints )
{
int s = (int) rV.size();
Mat invK64, invK;
invK64 = cameraMatrix.inv();
invK64.convertTo(invK, CV_32F);
for(int i = 0; i < s; ++i)
{
Mat r, t, rMat;
rV[i].convertTo(r, CV_32F);
tV[i].convertTo(t, CV_32F);
Rodrigues(r, rMat);
Mat transPlaneToCam = rMat.inv()*t;
vector<Point3f> wpTemp;
int s2 = (int) imgPoints[i].size();
for(int j = 0; j < s2; ++j){
Mat coords(3, 1, CV_32F);
coords.at<float>(0, 0) = imgPoints[i][j].x;
coords.at<float>(1, 0) = imgPoints[i][j].y;
coords.at<float>(2, 0) = 1.0f;
Mat worldPtCam = invK*coords;
Mat worldPtPlane = rMat.inv()*worldPtCam;
float scale = transPlaneToCam.at<float>(2)/worldPtPlane.at<float>(2);
Mat worldPtPlaneReproject = scale*worldPtPlane - transPlaneToCam;
Point3f pt;
pt.x = worldPtPlaneReproject.at<float>(0);
pt.y = worldPtPlaneReproject.at<float>(1);
pt.z = 0;
wpTemp.push_back(pt);
}
worldPoints.push_back(wpTemp);
}
}
void saveCalibrationResults( String path, Mat camK, Mat camDistCoeffs, Mat projK, Mat projDistCoeffs,
Mat fundamental )
{
FileStorage fs(path + ".yml", FileStorage::WRITE);
fs << "camIntrinsics" << camK;
fs << "camDistCoeffs" << camDistCoeffs;
fs << "projIntrinsics" << projK;
fs << "projDistCoeffs" << projDistCoeffs;
fs << "fundamental" << fundamental;
fs.release();
}
void saveCalibrationData( String path, vector<Mat> T1, vector<Mat> T2, vector<Mat> ptsProjCam, vector<Mat> ptsProjProj, vector<Mat> ptsProjCamN, vector<Mat> ptsProjProjN )
{
FileStorage fs(path + ".yml", FileStorage::WRITE);
int size = (int) T1.size();
fs << "size" << size;
for( int i = 0; i < (int)T1.size(); ++i )
{
ostringstream nbr;
nbr << i;
fs << "TprojCam" + nbr.str() << T1[i];
fs << "TProjProj" + nbr.str() << T2[i];
fs << "ptsProjCam" + nbr.str() << ptsProjCam[i];
fs << "ptsProjProj" + nbr.str() << ptsProjProj[i];
fs << "ptsProjCamN" + nbr.str() << ptsProjCamN[i];
fs << "ptsProjProjN" + nbr.str() << ptsProjProjN[i];
}
fs.release();
}
void normalize( const Mat &pts, const int& dim, Mat& normpts, Mat &T )
{
float averagedist = 0;
float scale = 0;
//centroid
Mat centroid(dim,1,CV_32F);
Scalar tmp;
if( normpts.empty() )
{
normpts= Mat(pts.rows,pts.cols,CV_32F);
}
for( int i = 0 ; i < dim ; ++i )
{
tmp = mean(pts.row(i));
centroid.at<float>(i,0) = (float)tmp[0];
subtract(pts.row(i), centroid.at<float>(i, 0), normpts.row(i));
}
//average distance
Mat ptstmp;
for( int i = 0 ; i < normpts.cols; ++i )
{
ptstmp = normpts.col(i);
averagedist = averagedist+(float)norm(ptstmp);
}
averagedist = averagedist / normpts.cols;
scale = (float)(sqrt(static_cast<float>(dim)) / averagedist);
normpts = normpts * scale;
T=cv::Mat::eye(dim+1,dim+1,CV_32F);
for( int i = 0; i < dim; ++i )
{
T.at<float>(i, i) = scale;
T.at<float>(i, dim) = -scale*centroid.at<float>(i, 0);
}
}
void fromVectorToMat( vector<Point2f> v, Mat &pts )
{
int nbrOfPoints = (int) v.size();
if( pts.empty() )
pts.create(2, nbrOfPoints, CV_32F);
for( int i = 0; i < nbrOfPoints; ++i )
{
pts.at<float>(0, i) = v[i].x;
pts.at<float>(1, i) = v[i].y;
}
}
void fromMatToVector( Mat pts, vector<Point2f> &v )
{
int nbrOfPoints = pts.cols;
for( int i = 0; i < nbrOfPoints; ++i )
{
Point2f temp;
temp.x = pts.at<float>(0, i);
temp.y = pts.at<float>(1, i);
v.push_back(temp);
}
}