517 lines
18 KiB
C++
517 lines
18 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2015, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include <opencv2/highgui.hpp>
|
|
#include <vector>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
#include <opencv2/core.hpp>
|
|
#include <opencv2/core/utility.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/calib3d.hpp>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
static const char* keys =
|
|
{
|
|
"{@camSettingsPath | | Path of camera calibration file}"
|
|
"{@projSettingsPath | | Path of projector settings}"
|
|
"{@patternPath | | Path to checkerboard pattern}"
|
|
"{@outputName | | Base name for the calibration data}"
|
|
};
|
|
|
|
static void help()
|
|
{
|
|
cout << "\nThis example calibrates a camera and a projector" << endl;
|
|
cout << "To call: ./example_structured_light_projectorcalibration <cam_settings_path> "
|
|
" <proj_settings_path> <chessboard_path> <calibration_basename>"
|
|
" cam settings are parameters about the chessboard that needs to be detected to"
|
|
" calibrate the camera and proj setting are the same kind of parameters about the chessboard"
|
|
" that needs to be detected to calibrate the projector" << endl;
|
|
}
|
|
enum calibrationPattern{ CHESSBOARD, CIRCLES_GRID, ASYMETRIC_CIRCLES_GRID };
|
|
|
|
struct Settings
|
|
{
|
|
Settings();
|
|
int patternType;
|
|
Size patternSize;
|
|
Size subpixelSize;
|
|
Size imageSize;
|
|
float squareSize;
|
|
int nbrOfFrames;
|
|
};
|
|
|
|
void loadSettings( String path, Settings &sttngs );
|
|
|
|
void createObjectPoints( vector<Point3f> &patternCorners, Size patternSize, float squareSize,
|
|
int patternType );
|
|
|
|
void createProjectorObjectPoints( vector<Point2f> &patternCorners, Size patternSize, float squareSize,
|
|
int patternType );
|
|
|
|
double calibrate( vector< vector<Point3f> > objPoints, vector< vector<Point2f> > imgPoints,
|
|
Mat &cameraMatrix, Mat &distCoeffs, vector<Mat> &r, vector<Mat> &t, Size imgSize );
|
|
|
|
void fromCamToWorld( Mat cameraMatrix, vector<Mat> rV, vector<Mat> tV,
|
|
vector< vector<Point2f> > imgPoints, vector< vector<Point3f> > &worldPoints );
|
|
|
|
void saveCalibrationResults( String path, Mat camK, Mat camDistCoeffs, Mat projK, Mat projDistCoeffs,
|
|
Mat fundamental );
|
|
|
|
void saveCalibrationData( String path, vector<Mat> T1, vector<Mat> T2, vector<Mat> ptsProjCam, vector<Mat> ptsProjProj, vector<Mat> ptsProjCamN, vector<Mat> ptsProjProjN);
|
|
|
|
void normalize(const Mat &pts, const int& dim, Mat& normpts, Mat &T);
|
|
|
|
void fromVectorToMat( vector<Point2f> v, Mat &pts);
|
|
|
|
void fromMatToVector( Mat pts, vector<Point2f> &v );
|
|
|
|
int main( int argc, char **argv )
|
|
{
|
|
VideoCapture cap(CAP_PVAPI);
|
|
Mat frame;
|
|
|
|
int nbrOfValidFrames = 0;
|
|
|
|
vector< vector<Point2f> > imagePointsCam, imagePointsProj, PointsInProj, imagePointsProjN, pointsInProjN;
|
|
vector< vector<Point3f> > objectPointsCam, worldPointsProj;
|
|
vector<Point3f> tempCam;
|
|
vector<Point2f> tempProj;
|
|
vector<Mat> T1, T2;
|
|
vector<Mat> projInProj, projInCam;
|
|
vector<Mat> projInProjN, projInCamN;
|
|
|
|
vector<Mat> rVecs, tVecs, projectorRVecs, projectorTVecs;
|
|
Mat cameraMatrix, distCoeffs, projectorMatrix, projectorDistCoeffs;
|
|
Mat pattern;
|
|
vector<Mat> images;
|
|
|
|
Settings camSettings, projSettings;
|
|
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
String camSettingsPath = parser.get<String>(0);
|
|
String projSettingsPath = parser.get<String>(1);
|
|
String patternPath = parser.get<String>(2);
|
|
String outputName = parser.get<String>(3);
|
|
|
|
if( camSettingsPath.empty() || projSettingsPath.empty() || patternPath.empty() || outputName.empty() ){
|
|
help();
|
|
return -1;
|
|
}
|
|
|
|
pattern = imread(patternPath);
|
|
|
|
loadSettings(camSettingsPath, camSettings);
|
|
loadSettings(projSettingsPath, projSettings);
|
|
|
|
projSettings.imageSize = Size(pattern.rows, pattern.cols);
|
|
|
|
createObjectPoints(tempCam, camSettings.patternSize,
|
|
camSettings.squareSize, camSettings.patternType);
|
|
createProjectorObjectPoints(tempProj, projSettings.patternSize,
|
|
projSettings.squareSize, projSettings.patternType);
|
|
|
|
if(!cap.isOpened())
|
|
{
|
|
cout << "Camera could not be opened" << endl;
|
|
return -1;
|
|
}
|
|
cap.set(CAP_PROP_PVAPI_PIXELFORMAT, CAP_PVAPI_PIXELFORMAT_BAYER8);
|
|
|
|
namedWindow("pattern", WINDOW_NORMAL);
|
|
setWindowProperty("pattern", WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);
|
|
|
|
namedWindow("camera view", WINDOW_NORMAL);
|
|
|
|
imshow("pattern", pattern);
|
|
cout << "Press any key when ready" << endl;
|
|
waitKey(0);
|
|
|
|
while( nbrOfValidFrames < camSettings.nbrOfFrames )
|
|
{
|
|
cap >> frame;
|
|
if( frame.data )
|
|
{
|
|
Mat color;
|
|
cvtColor(frame, color, COLOR_BayerBG2BGR);
|
|
if( camSettings.imageSize.height == 0 || camSettings.imageSize.width == 0 )
|
|
{
|
|
camSettings.imageSize = Size(frame.rows, frame.cols);
|
|
}
|
|
|
|
bool foundProj, foundCam;
|
|
|
|
vector<Point2f> projPointBuf;
|
|
vector<Point2f> camPointBuf;
|
|
|
|
imshow("camera view", color);
|
|
if( camSettings.patternType == CHESSBOARD && projSettings.patternType == CHESSBOARD )
|
|
{
|
|
int calibFlags = CALIB_CB_ADAPTIVE_THRESH;
|
|
|
|
foundCam = findChessboardCorners(color, camSettings.patternSize,
|
|
camPointBuf, calibFlags);
|
|
|
|
foundProj = findChessboardCorners(color, projSettings.patternSize,
|
|
projPointBuf, calibFlags);
|
|
|
|
if( foundCam && foundProj )
|
|
{
|
|
Mat gray;
|
|
cvtColor(color, gray, COLOR_BGR2GRAY);
|
|
cout << "found pattern" << endl;
|
|
Mat projCorners, camCorners;
|
|
cornerSubPix(gray, camPointBuf, camSettings.subpixelSize, Size(-1, -1),
|
|
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 0.1));
|
|
|
|
cornerSubPix(gray, projPointBuf, projSettings.subpixelSize, Size(-1, -1),
|
|
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 0.1));
|
|
|
|
drawChessboardCorners(gray, camSettings.patternSize, camPointBuf, foundCam);
|
|
drawChessboardCorners(gray, projSettings.patternSize, projPointBuf, foundProj);
|
|
|
|
imshow("camera view", gray);
|
|
char c = (char)waitKey(0);
|
|
if( c == 10 )
|
|
{
|
|
cout << "saving pattern #" << nbrOfValidFrames << " for calibration" << endl;
|
|
ostringstream name;
|
|
name << nbrOfValidFrames;
|
|
nbrOfValidFrames += 1;
|
|
|
|
imagePointsCam.push_back(camPointBuf);
|
|
imagePointsProj.push_back(projPointBuf);
|
|
objectPointsCam.push_back(tempCam);
|
|
PointsInProj.push_back(tempProj);
|
|
images.push_back(frame);
|
|
|
|
Mat ptsProjProj, ptsProjCam;
|
|
Mat ptsProjProjN, ptsProjCamN;
|
|
Mat TProjProj, TProjCam;
|
|
vector<Point2f> ptsProjProjVec;
|
|
vector<Point2f> ptsProjCamVec;
|
|
|
|
fromVectorToMat(tempProj, ptsProjProj);
|
|
normalize(ptsProjProj, 2, ptsProjProjN, TProjProj);
|
|
fromMatToVector(ptsProjProjN, ptsProjProjVec);
|
|
pointsInProjN.push_back(ptsProjProjVec);
|
|
T2.push_back(TProjProj);
|
|
projInProj.push_back(ptsProjProj);
|
|
projInProjN.push_back(ptsProjProjN);
|
|
|
|
fromVectorToMat(projPointBuf, ptsProjCam);
|
|
normalize(ptsProjCam, 2, ptsProjCamN, TProjCam);
|
|
fromMatToVector(ptsProjCamN, ptsProjCamVec);
|
|
imagePointsProjN.push_back(ptsProjCamVec);
|
|
T1.push_back(TProjCam);
|
|
projInCam.push_back(ptsProjCam);
|
|
projInCamN.push_back(ptsProjCamN);
|
|
|
|
}
|
|
else if( c == 32 )
|
|
{
|
|
cout << "capture discarded" << endl;
|
|
}
|
|
else if( c == 27 )
|
|
{
|
|
cout << "closing program" << endl;
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cout << "no pattern found, move board and press any key" << endl;
|
|
imshow("camera view", frame);
|
|
waitKey(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
saveCalibrationData(outputName + "_points.yml", T1, T2, projInCam, projInProj, projInCamN, projInProjN);
|
|
|
|
double rms = calibrate(objectPointsCam, imagePointsCam, cameraMatrix, distCoeffs,
|
|
rVecs, tVecs, camSettings.imageSize);
|
|
cout << "rms = " << rms << endl;
|
|
cout << "camera matrix = \n" << cameraMatrix << endl;
|
|
cout << "dist coeffs = \n" << distCoeffs << endl;
|
|
|
|
fromCamToWorld(cameraMatrix, rVecs, tVecs, imagePointsProj, worldPointsProj);
|
|
|
|
rms = calibrate(worldPointsProj, PointsInProj, projectorMatrix, projectorDistCoeffs,
|
|
projectorRVecs, projectorTVecs, projSettings.imageSize);
|
|
|
|
cout << "rms = " << rms << endl;
|
|
cout << "projector matrix = \n" << projectorMatrix << endl;
|
|
cout << "projector dist coeffs = \n" << distCoeffs << endl;
|
|
|
|
Mat stereoR, stereoT, essential, fundamental;
|
|
Mat RCam, RProj, PCam, PProj, Q;
|
|
rms = stereoCalibrate(worldPointsProj, imagePointsProj, PointsInProj, cameraMatrix, distCoeffs,
|
|
projectorMatrix, projectorDistCoeffs, camSettings.imageSize, stereoR, stereoT,
|
|
essential, fundamental);
|
|
|
|
cout << "stereo calibrate: \n" << fundamental << endl;
|
|
|
|
saveCalibrationResults(outputName, cameraMatrix, distCoeffs, projectorMatrix, projectorDistCoeffs, fundamental );
|
|
return 0;
|
|
}
|
|
|
|
Settings::Settings(){
|
|
patternType = CHESSBOARD;
|
|
patternSize = Size(13, 9);
|
|
subpixelSize = Size(11, 11);
|
|
squareSize = 50;
|
|
nbrOfFrames = 25;
|
|
}
|
|
|
|
void loadSettings( String path, Settings &sttngs )
|
|
{
|
|
FileStorage fsInput(path, FileStorage::READ);
|
|
|
|
fsInput["PatternWidth"] >> sttngs.patternSize.width;
|
|
fsInput["PatternHeight"] >> sttngs.patternSize.height;
|
|
fsInput["SubPixelWidth"] >> sttngs.subpixelSize.width;
|
|
fsInput["SubPixelHeight"] >> sttngs.subpixelSize.height;
|
|
fsInput["SquareSize"] >> sttngs.squareSize;
|
|
fsInput["NbrOfFrames"] >> sttngs.nbrOfFrames;
|
|
fsInput["PatternType"] >> sttngs.patternType;
|
|
fsInput.release();
|
|
}
|
|
|
|
double calibrate( vector< vector<Point3f> > objPoints, vector< vector<Point2f> > imgPoints,
|
|
Mat &cameraMatrix, Mat &distCoeffs, vector<Mat> &r, vector<Mat> &t, Size imgSize )
|
|
{
|
|
int calibFlags = 0;
|
|
|
|
double rms = calibrateCamera(objPoints, imgPoints, imgSize, cameraMatrix,
|
|
distCoeffs, r, t, calibFlags);
|
|
|
|
return rms;
|
|
}
|
|
|
|
void createObjectPoints( vector<Point3f> &patternCorners, Size patternSize, float squareSize,
|
|
int patternType )
|
|
{
|
|
switch( patternType )
|
|
{
|
|
case CHESSBOARD:
|
|
case CIRCLES_GRID:
|
|
for( int i = 0; i < patternSize.height; ++i )
|
|
{
|
|
for( int j = 0; j < patternSize.width; ++j )
|
|
{
|
|
patternCorners.push_back(Point3f(float(i*squareSize), float(j*squareSize), 0));
|
|
}
|
|
}
|
|
break;
|
|
case ASYMETRIC_CIRCLES_GRID:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void createProjectorObjectPoints( vector<Point2f> &patternCorners, Size patternSize, float squareSize,
|
|
int patternType )
|
|
{
|
|
switch( patternType )
|
|
{
|
|
case CHESSBOARD:
|
|
case CIRCLES_GRID:
|
|
for( int i = 1; i <= patternSize.height; ++i )
|
|
{
|
|
for( int j = 1; j <= patternSize.width; ++j )
|
|
{
|
|
patternCorners.push_back(Point2f(float(j*squareSize), float(i*squareSize)));
|
|
}
|
|
}
|
|
break;
|
|
case ASYMETRIC_CIRCLES_GRID:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void fromCamToWorld( Mat cameraMatrix, vector<Mat> rV, vector<Mat> tV,
|
|
vector< vector<Point2f> > imgPoints, vector< vector<Point3f> > &worldPoints )
|
|
{
|
|
int s = (int) rV.size();
|
|
Mat invK64, invK;
|
|
invK64 = cameraMatrix.inv();
|
|
invK64.convertTo(invK, CV_32F);
|
|
|
|
for(int i = 0; i < s; ++i)
|
|
{
|
|
Mat r, t, rMat;
|
|
rV[i].convertTo(r, CV_32F);
|
|
tV[i].convertTo(t, CV_32F);
|
|
|
|
Rodrigues(r, rMat);
|
|
Mat transPlaneToCam = rMat.inv()*t;
|
|
|
|
vector<Point3f> wpTemp;
|
|
int s2 = (int) imgPoints[i].size();
|
|
for(int j = 0; j < s2; ++j){
|
|
Mat coords(3, 1, CV_32F);
|
|
coords.at<float>(0, 0) = imgPoints[i][j].x;
|
|
coords.at<float>(1, 0) = imgPoints[i][j].y;
|
|
coords.at<float>(2, 0) = 1.0f;
|
|
|
|
Mat worldPtCam = invK*coords;
|
|
Mat worldPtPlane = rMat.inv()*worldPtCam;
|
|
|
|
float scale = transPlaneToCam.at<float>(2)/worldPtPlane.at<float>(2);
|
|
Mat worldPtPlaneReproject = scale*worldPtPlane - transPlaneToCam;
|
|
|
|
Point3f pt;
|
|
pt.x = worldPtPlaneReproject.at<float>(0);
|
|
pt.y = worldPtPlaneReproject.at<float>(1);
|
|
pt.z = 0;
|
|
wpTemp.push_back(pt);
|
|
}
|
|
worldPoints.push_back(wpTemp);
|
|
}
|
|
}
|
|
|
|
void saveCalibrationResults( String path, Mat camK, Mat camDistCoeffs, Mat projK, Mat projDistCoeffs,
|
|
Mat fundamental )
|
|
{
|
|
FileStorage fs(path + ".yml", FileStorage::WRITE);
|
|
fs << "camIntrinsics" << camK;
|
|
fs << "camDistCoeffs" << camDistCoeffs;
|
|
fs << "projIntrinsics" << projK;
|
|
fs << "projDistCoeffs" << projDistCoeffs;
|
|
fs << "fundamental" << fundamental;
|
|
fs.release();
|
|
}
|
|
|
|
void saveCalibrationData( String path, vector<Mat> T1, vector<Mat> T2, vector<Mat> ptsProjCam, vector<Mat> ptsProjProj, vector<Mat> ptsProjCamN, vector<Mat> ptsProjProjN )
|
|
{
|
|
FileStorage fs(path + ".yml", FileStorage::WRITE);
|
|
|
|
int size = (int) T1.size();
|
|
fs << "size" << size;
|
|
for( int i = 0; i < (int)T1.size(); ++i )
|
|
{
|
|
ostringstream nbr;
|
|
nbr << i;
|
|
fs << "TprojCam" + nbr.str() << T1[i];
|
|
fs << "TProjProj" + nbr.str() << T2[i];
|
|
fs << "ptsProjCam" + nbr.str() << ptsProjCam[i];
|
|
fs << "ptsProjProj" + nbr.str() << ptsProjProj[i];
|
|
fs << "ptsProjCamN" + nbr.str() << ptsProjCamN[i];
|
|
fs << "ptsProjProjN" + nbr.str() << ptsProjProjN[i];
|
|
}
|
|
fs.release();
|
|
|
|
}
|
|
|
|
void normalize( const Mat &pts, const int& dim, Mat& normpts, Mat &T )
|
|
{
|
|
float averagedist = 0;
|
|
float scale = 0;
|
|
|
|
//centroid
|
|
|
|
Mat centroid(dim,1,CV_32F);
|
|
Scalar tmp;
|
|
|
|
if( normpts.empty() )
|
|
{
|
|
normpts= Mat(pts.rows,pts.cols,CV_32F);
|
|
}
|
|
|
|
for( int i = 0 ; i < dim ; ++i )
|
|
{
|
|
tmp = mean(pts.row(i));
|
|
centroid.at<float>(i,0) = (float)tmp[0];
|
|
subtract(pts.row(i), centroid.at<float>(i, 0), normpts.row(i));
|
|
}
|
|
|
|
//average distance
|
|
|
|
Mat ptstmp;
|
|
for( int i = 0 ; i < normpts.cols; ++i )
|
|
{
|
|
ptstmp = normpts.col(i);
|
|
averagedist = averagedist+(float)norm(ptstmp);
|
|
}
|
|
averagedist = averagedist / normpts.cols;
|
|
scale = (float)(sqrt(static_cast<float>(dim)) / averagedist);
|
|
|
|
normpts = normpts * scale;
|
|
|
|
T=cv::Mat::eye(dim+1,dim+1,CV_32F);
|
|
for( int i = 0; i < dim; ++i )
|
|
{
|
|
T.at<float>(i, i) = scale;
|
|
T.at<float>(i, dim) = -scale*centroid.at<float>(i, 0);
|
|
}
|
|
}
|
|
|
|
void fromVectorToMat( vector<Point2f> v, Mat &pts )
|
|
{
|
|
int nbrOfPoints = (int) v.size();
|
|
|
|
if( pts.empty() )
|
|
pts.create(2, nbrOfPoints, CV_32F);
|
|
|
|
for( int i = 0; i < nbrOfPoints; ++i )
|
|
{
|
|
pts.at<float>(0, i) = v[i].x;
|
|
pts.at<float>(1, i) = v[i].y;
|
|
}
|
|
}
|
|
|
|
void fromMatToVector( Mat pts, vector<Point2f> &v )
|
|
{
|
|
int nbrOfPoints = pts.cols;
|
|
|
|
for( int i = 0; i < nbrOfPoints; ++i )
|
|
{
|
|
Point2f temp;
|
|
temp.x = pts.at<float>(0, i);
|
|
temp.y = pts.at<float>(1, i);
|
|
v.push_back(temp);
|
|
}
|
|
} |