OpenCV_4.2.0/opencv_contrib-4.2.0/modules/rgbd/test/test_normal.cpp

456 lines
13 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
// This code is also subject to the license terms in the LICENSE_WillowGarage.md file found in this module's directory
#include "test_precomp.hpp"
#include <opencv2/rgbd.hpp>
#include <opencv2/calib3d.hpp>
namespace opencv_test { namespace {
#if 0
Point3f
rayPlaneIntersection(Point2f uv, const Mat& centroid, const Mat& normal, const Mat_<float>& Kinv)
{
Matx33d dKinv(Kinv);
Vec3d dNormal(normal);
return rayPlaneIntersection(Vec3d(uv.x, uv.y, 1), centroid.dot(normal), dNormal, dKinv);
}
#endif
Vec3f
rayPlaneIntersection(const Vec3d& uv1, double centroid_dot_normal, const Vec3d& normal, const Matx33d& Kinv)
{
Matx31d L = Kinv * uv1; //a ray passing through camera optical center
//and uv.
L = L * (1.0 / cv::norm(L));
double LdotNormal = L.dot(normal);
double d;
if (std::fabs(LdotNormal) > 1e-9)
{
d = centroid_dot_normal / LdotNormal;
}
else
{
d = 1.0;
std::cout << "warning, LdotNormal nearly 0! " << LdotNormal << std::endl;
std::cout << "contents of L, Normal: " << Mat(L) << ", " << Mat(normal) << std::endl;
}
Vec3f xyz((float)(d * L(0)), (float)(d * L(1)), (float)(d * L(2)));
return xyz;
}
const int W = 640;
const int H = 480;
//int window_size = 5;
float focal_length = 525;
float cx = W / 2.f + 0.5f;
float cy = H / 2.f + 0.5f;
Mat K = (Mat_<double>(3, 3) << focal_length, 0, cx, 0, focal_length, cy, 0, 0, 1);
Mat Kinv = K.inv();
void points3dToDepth16U(const Mat_<Vec3f>& points3d, Mat& depthMap);
void points3dToDepth16U(const Mat_<Vec3f>& points3d, Mat& depthMap)
{
std::vector<Point3f> points3dvec;
for(int i = 0; i < H; i++)
for(int j = 0; j < W; j++)
points3dvec.push_back(Point3f(points3d(i,j)[0], points3d(i,j)[1], points3d(i,j)[2]));
std::vector<Point2f> img_points;
depthMap = Mat::zeros(H, W, CV_32F);
Vec3f R(0.0,0.0,0.0);
Vec3f T(0.0,0.0,0.0);
cv::projectPoints(points3dvec, R, T, K, Mat(), img_points);
int index = 0;
for(int i = 0; i < H; i++)
{
for(int j = 0; j < W; j++)
{
float value = (points3d.at<Vec3f>(i, j))[2]; // value is the z
depthMap.at<float>(cvRound(img_points[index].y), cvRound(img_points[index].x)) = value;
index++;
}
}
depthMap.convertTo(depthMap, CV_16U, 1000);
}
static RNG rng;
struct Plane
{
Vec3d n, p;
double p_dot_n;
Plane()
{
n[0] = rng.uniform(-0.5, 0.5);
n[1] = rng.uniform(-0.5, 0.5);
n[2] = -0.3; //rng.uniform(-1.f, 0.5f);
n = n / cv::norm(n);
set_d((float)rng.uniform(-2.0, 0.6));
}
void
set_d(float d)
{
p = Vec3d(0, 0, d / n[2]);
p_dot_n = p.dot(n);
}
Vec3f
intersection(float u, float v, const Matx33f& Kinv_in) const
{
return rayPlaneIntersection(Vec3d(u, v, 1), p_dot_n, n, Kinv_in);
}
};
void
gen_points_3d(std::vector<Plane>& planes_out, Mat_<unsigned char> &plane_mask, Mat& points3d, Mat& normals,
int n_planes)
{
std::vector<Plane> planes;
for (int i = 0; i < n_planes; i++)
{
Plane px;
for (int j = 0; j < 1; j++)
{
px.set_d(rng.uniform(-3.f, -0.5f));
planes.push_back(px);
}
}
Mat_ < Vec3f > outp(H, W);
Mat_ < Vec3f > outn(H, W);
plane_mask.create(H, W);
// n ( r - r_0) = 0
// n * r_0 = d
//
// r_0 = (0,0,0)
// r[0]
for (int v = 0; v < H; v++)
{
for (int u = 0; u < W; u++)
{
unsigned int plane_index = (unsigned int)((u / float(W)) * planes.size());
Plane plane = planes[plane_index];
outp(v, u) = plane.intersection((float)u, (float)v, Kinv);
outn(v, u) = plane.n;
plane_mask(v, u) = (uchar)plane_index;
}
}
planes_out = planes;
points3d = outp;
normals = outn;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class CV_RgbdNormalsTest: public cvtest::BaseTest
{
public:
CV_RgbdNormalsTest()
{
}
~CV_RgbdNormalsTest()
{
}
protected:
void
run(int)
{
try
{
Mat_<unsigned char> plane_mask;
for (unsigned char i = 0; i < 3; ++i)
{
RgbdNormals::RGBD_NORMALS_METHOD method;
// inner vector: whether it's 1 plane or 3 planes
// outer vector: float or double
std::vector<std::vector<float> > errors(2);
errors[0].resize(4);
errors[1].resize(4);
switch (i)
{
case 0:
method = RgbdNormals::RGBD_NORMALS_METHOD_FALS;
std::cout << std::endl << "*** FALS" << std::endl;
errors[0][0] = 0.006f;
errors[0][1] = 0.03f;
errors[1][0] = 0.0001f;
errors[1][1] = 0.02f;
break;
case 1:
method = RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD;
std::cout << std::endl << "*** LINEMOD" << std::endl;
errors[0][0] = 0.04f;
errors[0][1] = 0.07f;
errors[0][2] = 0.04f; // depth 16U 1 plane
errors[0][3] = 0.07f; // depth 16U 3 planes
errors[1][0] = 0.05f;
errors[1][1] = 0.08f;
errors[1][2] = 0.05f; // depth 16U 1 plane
errors[1][3] = 0.08f; // depth 16U 3 planes
break;
case 2:
method = RgbdNormals::RGBD_NORMALS_METHOD_SRI;
std::cout << std::endl << "*** SRI" << std::endl;
errors[0][0] = 0.02f;
errors[0][1] = 0.04f;
errors[1][0] = 0.02f;
errors[1][1] = 0.04f;
break;
default:
method = (RgbdNormals::RGBD_NORMALS_METHOD)-1;
CV_Error(0, "");
}
for (unsigned char j = 0; j < 2; ++j)
{
int depth = (j % 2 == 0) ? CV_32F : CV_64F;
if (depth == CV_32F)
std::cout << "* float" << std::endl;
else
std::cout << "* double" << std::endl;
RgbdNormals normals_computer(H, W, depth, K, 5, method);
normals_computer.initialize();
std::vector<Plane> plane_params;
Mat points3d, ground_normals;
// 1 plane, continuous scene, very low error..
std::cout << "1 plane - input 3d points" << std::endl;
float err_mean = 0;
for (int ii = 0; ii < 5; ++ii)
{
gen_points_3d(plane_params, plane_mask, points3d, ground_normals, 1);
err_mean += testit(points3d, ground_normals, normals_computer);
}
std::cout << "mean diff: " << (err_mean / 5) << std::endl;
EXPECT_LE(err_mean/5, errors[j][0])<< " thresh: " << errors[j][0] << std::endl;
// 3 discontinuities, more error expected.
std::cout << "3 planes" << std::endl;
err_mean = 0;
for (int ii = 0; ii < 5; ++ii)
{
gen_points_3d(plane_params, plane_mask, points3d, ground_normals, 3);
err_mean += testit(points3d, ground_normals, normals_computer);
}
std::cout << "mean diff: " << (err_mean / 5) << std::endl;
EXPECT_LE(err_mean/5, errors[j][1])<< "mean diff: " << (err_mean/5) << " thresh: " << errors[j][1] << std::endl;
if(method == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD)
{
// depth 16U test
std::cout << "** depth 16U - 1 plane" << std::endl;
err_mean = 0;
for (int ii = 0; ii < 5; ++ii)
{
gen_points_3d(plane_params, plane_mask, points3d, ground_normals, 1);
Mat depthMap;
points3dToDepth16U(points3d, depthMap);
err_mean += testit(depthMap, ground_normals, normals_computer);
}
std::cout << "mean diff: " << (err_mean / 5) << std::endl;
EXPECT_LE(err_mean/5, errors[j][2])<< " thresh: " << errors[j][2] << std::endl;
std::cout << "** depth 16U - 3 plane" << std::endl;
err_mean = 0;
for (int ii = 0; ii < 5; ++ii)
{
gen_points_3d(plane_params, plane_mask, points3d, ground_normals, 3);
Mat depthMap;
points3dToDepth16U(points3d, depthMap);
err_mean += testit(depthMap, ground_normals, normals_computer);
}
std::cout << "mean diff: " << (err_mean / 5) << std::endl;
EXPECT_LE(err_mean/5, errors[j][3])<< "mean diff: " << (err_mean/5) << " thresh: " << errors[j][3] << std::endl;
}
}
}
//TODO test NaNs in data
} catch (...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
float
testit(const Mat & points3d, const Mat & in_ground_normals, const RgbdNormals & normals_computer)
{
TickMeter tm;
tm.start();
Mat in_normals;
if (normals_computer.getMethod() == RgbdNormals::RGBD_NORMALS_METHOD_LINEMOD && points3d.channels() == 3)
{
std::vector<Mat> channels;
split(points3d, channels);
normals_computer(channels[2], in_normals);
}
else
normals_computer(points3d, in_normals);
tm.stop();
Mat_<Vec3f> normals, ground_normals;
in_normals.convertTo(normals, CV_32FC3);
in_ground_normals.convertTo(ground_normals, CV_32FC3);
float err = 0;
for (int y = 0; y < normals.rows; ++y)
for (int x = 0; x < normals.cols; ++x)
{
Vec3f vec1 = normals(y, x), vec2 = ground_normals(y, x);
vec1 = vec1 / cv::norm(vec1);
vec2 = vec2 / cv::norm(vec2);
float dot = vec1.dot(vec2);
// Just for rounding errors
if (std::abs(dot) < 1)
err += std::min(std::acos(dot), std::acos(-dot));
}
err /= normals.rows * normals.cols;
std::cout << "Average error: " << err << " Speed: " << tm.getTimeMilli() << " ms" << std::endl;
return err;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class CV_RgbdPlaneTest: public cvtest::BaseTest
{
public:
CV_RgbdPlaneTest()
{
}
~CV_RgbdPlaneTest()
{
}
protected:
void
run(int)
{
try
{
RgbdPlane plane_computer;
std::vector<Plane> planes;
Mat points3d, ground_normals;
Mat_<unsigned char> plane_mask;
gen_points_3d(planes, plane_mask, points3d, ground_normals, 1);
testit(planes, plane_mask, points3d, plane_computer); // 1 plane, continuous scene, very low error..
for (int ii = 0; ii < 10; ii++)
{
gen_points_3d(planes, plane_mask, points3d, ground_normals, 3); //three planes
testit(planes, plane_mask, points3d, plane_computer); // 3 discontinuities, more error expected.
}
} catch (...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
ts->set_failed_test_info(cvtest::TS::OK);
}
void
testit(const std::vector<Plane> & gt_planes, const Mat & gt_plane_mask, const Mat & points3d,
RgbdPlane & plane_computer)
{
for (char i_test = 0; i_test < 2; ++i_test)
{
TickMeter tm1, tm2;
Mat plane_mask;
std::vector<Vec4f> plane_coefficients;
if (i_test == 0)
{
tm1.start();
// First, get the normals
int depth = CV_32F;
RgbdNormals normals_computer(H, W, depth, K, 5, RgbdNormals::RGBD_NORMALS_METHOD_FALS);
Mat normals;
normals_computer(points3d, normals);
tm1.stop();
tm2.start();
plane_computer(points3d, normals, plane_mask, plane_coefficients);
tm2.stop();
}
else
{
tm2.start();
plane_computer(points3d, plane_mask, plane_coefficients);
tm2.stop();
}
// Compare each found plane to each ground truth plane
int n_planes = (int)plane_coefficients.size();
int n_gt_planes = (int)gt_planes.size();
Mat_<int> matching(n_gt_planes, n_planes);
for (int j = 0; j < n_gt_planes; ++j)
{
Mat gt_mask = gt_plane_mask == j;
int n_gt = countNonZero(gt_mask);
int n_max = 0, i_max = 0;
for (int i = 0; i < n_planes; ++i)
{
Mat dst;
bitwise_and(gt_mask, plane_mask == i, dst);
matching(j, i) = countNonZero(dst);
if (matching(j, i) > n_max)
{
n_max = matching(j, i);
i_max = i;
}
}
// Get the best match
ASSERT_LE(float(n_max - n_gt) / n_gt, 0.001);
// Compare the normals
Vec3d normal(plane_coefficients[i_max][0], plane_coefficients[i_max][1], plane_coefficients[i_max][2]);
ASSERT_GE(std::abs(gt_planes[j].n.dot(normal)), 0.95);
}
std::cout << " Speed: ";
if (i_test == 0)
std::cout << "normals " << tm1.getTimeMilli() << " ms and ";
std::cout << "plane " << tm2.getTimeMilli() << " ms " << std::endl;
}
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST(Rgbd_Normals, compute)
{
CV_RgbdNormalsTest test;
test.safe_run();
}
TEST(Rgbd_Plane, compute)
{
CV_RgbdPlaneTest test;
test.safe_run();
}
TEST(Rgbd_Plane, regression_2309_valgrind_check)
{
Mat points(640, 480, CV_32FC3, Scalar::all(0));
rgbd::RgbdPlane plane_detector;
plane_detector.setBlockSize(9); // Note, 640%9 is 1 and 480%9 is 3
Mat mask;
std::vector<cv::Vec4f> planes;
plane_detector(points, mask, planes); // Will corrupt memory; valgrind gets triggered
}
}} // namespace