424 lines
13 KiB
C++
424 lines
13 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include <iostream>
|
|
#include <opencv2/imgcodecs.hpp>
|
|
#include <opencv2/highgui.hpp> // OpenCV window I/O
|
|
#include <opencv2/imgproc.hpp> // OpenCV image transformations
|
|
|
|
#ifdef COMPARE_FEATURES
|
|
#include <opencv2/xfeatures2d.hpp>
|
|
#include <opencv2/calib3d.hpp>
|
|
#include <opencv2/calib3d/calib3d_c.h>
|
|
using namespace cv::xfeatures2d;
|
|
#endif
|
|
|
|
#include "opencv2/reg/mapaffine.hpp"
|
|
#include "opencv2/reg/mapshift.hpp"
|
|
#include "opencv2/reg/mapprojec.hpp"
|
|
#include "opencv2/reg/mappergradshift.hpp"
|
|
#include "opencv2/reg/mappergradeuclid.hpp"
|
|
#include "opencv2/reg/mappergradsimilar.hpp"
|
|
#include "opencv2/reg/mappergradaffine.hpp"
|
|
#include "opencv2/reg/mappergradproj.hpp"
|
|
#include "opencv2/reg/mapperpyramid.hpp"
|
|
|
|
static const char* DIFF_IM = "Image difference";
|
|
static const char* DIFF_REGPIX_IM = "Image difference: pixel registered";
|
|
|
|
using namespace cv;
|
|
using namespace cv::reg;
|
|
using namespace std;
|
|
|
|
static void showDifference(const Mat& image1, const Mat& image2, const char* title)
|
|
{
|
|
Mat img1, img2;
|
|
image1.convertTo(img1, CV_32FC3);
|
|
image2.convertTo(img2, CV_32FC3);
|
|
if(img1.channels() != 1)
|
|
cvtColor(img1, img1, COLOR_BGR2GRAY);
|
|
if(img2.channels() != 1)
|
|
cvtColor(img2, img2, COLOR_BGR2GRAY);
|
|
|
|
Mat imgDiff;
|
|
img1.copyTo(imgDiff);
|
|
imgDiff -= img2;
|
|
imgDiff /= 2.f;
|
|
imgDiff += 128.f;
|
|
|
|
Mat imgSh;
|
|
imgDiff.convertTo(imgSh, CV_8UC3);
|
|
imshow(title, imgSh);
|
|
}
|
|
|
|
static void testShift(const Mat& img1)
|
|
{
|
|
Mat img2;
|
|
|
|
// Warp original image
|
|
Vec<double, 2> shift(5., 5.);
|
|
MapShift mapTest(shift);
|
|
mapTest.warp(img1, img2);
|
|
showDifference(img1, img2, DIFF_IM);
|
|
|
|
// Register
|
|
Ptr<MapperGradShift> mapper = makePtr<MapperGradShift>();
|
|
MapperPyramid mappPyr(mapper);
|
|
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
|
|
|
|
// Print result
|
|
MapShift* mapShift = dynamic_cast<MapShift*>(mapPtr.get());
|
|
cout << endl << "--- Testing shift mapper ---" << endl;
|
|
cout << Mat(shift) << endl;
|
|
cout << Mat(mapShift->getShift()) << endl;
|
|
|
|
// Display registration accuracy
|
|
Mat dest;
|
|
mapShift->inverseWarp(img2, dest);
|
|
showDifference(img1, dest, DIFF_REGPIX_IM);
|
|
|
|
waitKey(0);
|
|
destroyWindow(DIFF_IM);
|
|
destroyWindow(DIFF_REGPIX_IM);
|
|
}
|
|
|
|
static void testEuclidean(const Mat& img1)
|
|
{
|
|
Mat img2;
|
|
|
|
// Warp original image
|
|
double theta = 3*CV_PI/180;
|
|
double cosT = cos(theta);
|
|
double sinT = sin(theta);
|
|
Matx<double, 2, 2> linTr(cosT, -sinT, sinT, cosT);
|
|
Vec<double, 2> shift(5., 5.);
|
|
MapAffine mapTest(linTr, shift);
|
|
mapTest.warp(img1, img2);
|
|
showDifference(img1, img2, DIFF_IM);
|
|
|
|
// Register
|
|
Ptr<MapperGradEuclid> mapper = makePtr<MapperGradEuclid>();
|
|
MapperPyramid mappPyr(mapper);
|
|
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
|
|
|
|
// Print result
|
|
MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
|
|
cout << endl << "--- Testing Euclidean mapper ---" << endl;
|
|
cout << Mat(linTr) << endl;
|
|
cout << Mat(shift) << endl;
|
|
cout << Mat(mapAff->getLinTr()) << endl;
|
|
cout << Mat(mapAff->getShift()) << endl;
|
|
|
|
// Display registration accuracy
|
|
Mat dest;
|
|
mapAff->inverseWarp(img2, dest);
|
|
showDifference(img1, dest, DIFF_REGPIX_IM);
|
|
|
|
waitKey(0);
|
|
destroyWindow(DIFF_IM);
|
|
destroyWindow(DIFF_REGPIX_IM);
|
|
}
|
|
|
|
static void testSimilarity(const Mat& img1)
|
|
{
|
|
Mat img2;
|
|
|
|
// Warp original image
|
|
double theta = 3*CV_PI/180;
|
|
double scale = 0.95;
|
|
double a = scale*cos(theta);
|
|
double b = scale*sin(theta);
|
|
Matx<double, 2, 2> linTr(a, -b, b, a);
|
|
Vec<double, 2> shift(5., 5.);
|
|
MapAffine mapTest(linTr, shift);
|
|
mapTest.warp(img1, img2);
|
|
showDifference(img1, img2, DIFF_IM);
|
|
|
|
// Register
|
|
Ptr<MapperGradSimilar> mapper = makePtr<MapperGradSimilar>();
|
|
MapperPyramid mappPyr(mapper);
|
|
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
|
|
|
|
// Print result
|
|
MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
|
|
cout << endl << "--- Testing similarity mapper ---" << endl;
|
|
cout << Mat(linTr) << endl;
|
|
cout << Mat(shift) << endl;
|
|
cout << Mat(mapAff->getLinTr()) << endl;
|
|
cout << Mat(mapAff->getShift()) << endl;
|
|
|
|
// Display registration accuracy
|
|
Mat dest;
|
|
mapAff->inverseWarp(img2, dest);
|
|
showDifference(img1, dest, DIFF_REGPIX_IM);
|
|
|
|
waitKey(0);
|
|
destroyWindow(DIFF_IM);
|
|
destroyWindow(DIFF_REGPIX_IM);
|
|
}
|
|
|
|
static void testAffine(const Mat& img1)
|
|
{
|
|
Mat img2;
|
|
|
|
// Warp original image
|
|
Matx<double, 2, 2> linTr(1., 0.1, -0.01, 1.);
|
|
Vec<double, 2> shift(1., 1.);
|
|
MapAffine mapTest(linTr, shift);
|
|
mapTest.warp(img1, img2);
|
|
showDifference(img1, img2, DIFF_IM);
|
|
|
|
// Register
|
|
Ptr<MapperGradAffine> mapper = makePtr<MapperGradAffine>();
|
|
MapperPyramid mappPyr(mapper);
|
|
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
|
|
|
|
// Print result
|
|
MapAffine* mapAff = dynamic_cast<MapAffine*>(mapPtr.get());
|
|
cout << endl << "--- Testing affine mapper ---" << endl;
|
|
cout << Mat(linTr) << endl;
|
|
cout << Mat(shift) << endl;
|
|
cout << Mat(mapAff->getLinTr()) << endl;
|
|
cout << Mat(mapAff->getShift()) << endl;
|
|
|
|
// Display registration accuracy
|
|
Mat dest;
|
|
mapAff->inverseWarp(img2, dest);
|
|
showDifference(img1, dest, DIFF_REGPIX_IM);
|
|
|
|
waitKey(0);
|
|
destroyWindow(DIFF_IM);
|
|
destroyWindow(DIFF_REGPIX_IM);
|
|
}
|
|
|
|
static void testProjective(const Mat& img1)
|
|
{
|
|
Mat img2;
|
|
|
|
// Warp original image
|
|
Matx<double, 3, 3> projTr(1., 0., 0., 0., 1., 0., 0.0001, 0.0001, 1);
|
|
MapProjec mapTest(projTr);
|
|
mapTest.warp(img1, img2);
|
|
showDifference(img1, img2, DIFF_IM);
|
|
|
|
// Register
|
|
Ptr<MapperGradProj> mapper = makePtr<MapperGradProj>();
|
|
MapperPyramid mappPyr(mapper);
|
|
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
|
|
|
|
// Print result
|
|
MapProjec* mapProj = dynamic_cast<MapProjec*>(mapPtr.get());
|
|
mapProj->normalize();
|
|
cout << endl << "--- Testing projective transformation mapper ---" << endl;
|
|
cout << Mat(projTr) << endl;
|
|
cout << Mat(mapProj->getProjTr()) << endl;
|
|
|
|
// Display registration accuracy
|
|
Mat dest;
|
|
mapProj->inverseWarp(img2, dest);
|
|
showDifference(img1, dest, DIFF_REGPIX_IM);
|
|
|
|
waitKey(0);
|
|
destroyWindow(DIFF_IM);
|
|
destroyWindow(DIFF_REGPIX_IM);
|
|
}
|
|
|
|
#ifdef COMPARE_FEATURES
|
|
//
|
|
// Following an example from
|
|
// http:// ramsrigoutham.com/2012/11/22/panorama-image-stitching-in-opencv/
|
|
//
|
|
static void calcHomographyFeature(const Mat& image1, const Mat& image2)
|
|
{
|
|
static const char* difffeat = "Difference feature registered";
|
|
|
|
Mat gray_image1;
|
|
Mat gray_image2;
|
|
// Convert to Grayscale
|
|
if(image1.channels() != 1)
|
|
cvtColor(image1, gray_image1, COLOR_BGR2GRAY);
|
|
else
|
|
image1.copyTo(gray_image1);
|
|
if(image2.channels() != 1)
|
|
cvtColor(image2, gray_image2, COLOR_BGR2GRAY);
|
|
else
|
|
image2.copyTo(gray_image2);
|
|
|
|
//-- Step 1: Detect the keypoints using SIFT or SURF Detector
|
|
#ifdef USE_SIFT
|
|
Ptr<Feature2D> features = SIFT::create();
|
|
#else
|
|
int minHessian = 400;
|
|
Ptr<Feature2D> features = SURF::create(minHessian);
|
|
#endif
|
|
|
|
std::vector<KeyPoint> keypoints_object, keypoints_scene;
|
|
|
|
features->detect(gray_image1, keypoints_object);
|
|
features->detect(gray_image2, keypoints_scene);
|
|
|
|
//-- Step 2: Calculate descriptors (feature vectors)
|
|
|
|
Mat descriptors_object, descriptors_scene;
|
|
|
|
features->compute(gray_image1, keypoints_object, descriptors_object);
|
|
features->compute(gray_image2, keypoints_scene, descriptors_scene);
|
|
|
|
//-- Step 3: Matching descriptor vectors using FLANN matcher
|
|
FlannBasedMatcher matcher;
|
|
std::vector<DMatch> matches;
|
|
matcher.match(descriptors_object, descriptors_scene, matches);
|
|
|
|
double max_dist = 0; double min_dist = 100;
|
|
|
|
//-- Quick calculation of max and min distances between keypoints
|
|
for(int i = 0; i < descriptors_object.rows; i++)
|
|
{
|
|
double dist = matches[i].distance;
|
|
if( dist < min_dist ) min_dist = dist;
|
|
if( dist > max_dist ) max_dist = dist;
|
|
}
|
|
|
|
//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist)
|
|
std::vector<DMatch> good_matches;
|
|
|
|
for(int i = 0; i < descriptors_object.rows; i++) {
|
|
if(matches[i].distance < 3*min_dist) {
|
|
good_matches.push_back( matches[i]);
|
|
}
|
|
}
|
|
std::vector< Point2f > obj;
|
|
std::vector< Point2f > scene;
|
|
|
|
for(size_t i = 0; i < good_matches.size(); i++)
|
|
{
|
|
//-- Get the keypoints from the good matches
|
|
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
|
|
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
|
|
}
|
|
|
|
// Find the Homography Matrix
|
|
Mat H = findHomography( obj, scene, RANSAC );
|
|
// Use the Homography Matrix to warp the images
|
|
Mat result;
|
|
Mat Hinv = H.inv();
|
|
warpPerspective(image2, result, Hinv, image1.size());
|
|
|
|
cout << "--- Feature method\n" << H << endl;
|
|
|
|
Mat imf1, resf;
|
|
image1.convertTo(imf1, CV_64FC3);
|
|
result.convertTo(resf, CV_64FC3);
|
|
showDifference(imf1, resf, difffeat);
|
|
}
|
|
|
|
static void calcHomographyPixel(const Mat& img1, const Mat& img2)
|
|
{
|
|
static const char* diffpixel = "Difference pixel registered";
|
|
|
|
// Register using pixel differences
|
|
Ptr<MapperGradProj> mapper = makePtr<MapperGradProj>();
|
|
MapperPyramid mappPyr(mapper);
|
|
Ptr<Map> mapPtr = mappPyr.calculate(img1, img2);
|
|
|
|
// Print result
|
|
MapProjec* mapProj = dynamic_cast<MapProjec*>(mapPtr.get());
|
|
mapProj->normalize();
|
|
cout << "--- Pixel-based method\n" << Mat(mapProj->getProjTr()) << endl;
|
|
|
|
// Display registration accuracy
|
|
Mat dest;
|
|
mapProj->inverseWarp(img2, dest);
|
|
showDifference(img1, dest, diffpixel);
|
|
}
|
|
|
|
static void comparePixelVsFeature(const Mat& img1_8b, const Mat& img2_8b)
|
|
{
|
|
static const char* difforig = "Difference non-registered";
|
|
|
|
// Show difference of images
|
|
Mat img1, img2;
|
|
img1_8b.convertTo(img1, CV_64FC3);
|
|
img2_8b.convertTo(img2, CV_64FC3);
|
|
showDifference(img1, img2, difforig);
|
|
cout << endl << "--- Comparing feature-based with pixel difference based ---" << endl;
|
|
|
|
// Register using SURF keypoints
|
|
calcHomographyFeature(img1_8b, img2_8b);
|
|
|
|
// Register using pixel differences
|
|
calcHomographyPixel(img1, img2);
|
|
|
|
waitKey(0);
|
|
}
|
|
#endif
|
|
|
|
int main(void)
|
|
{
|
|
Mat img1;
|
|
img1 = imread("home.png", IMREAD_UNCHANGED);
|
|
if(!img1.data) {
|
|
cout << "Could not open or find file" << endl;
|
|
return -1;
|
|
}
|
|
// Convert to double, 3 channels
|
|
img1.convertTo(img1, CV_64FC3);
|
|
|
|
testShift(img1);
|
|
testEuclidean(img1);
|
|
testSimilarity(img1);
|
|
testAffine(img1);
|
|
testProjective(img1);
|
|
|
|
#ifdef COMPARE_FEATURES
|
|
Mat imgcmp1 = imread("LR_05.png", IMREAD_UNCHANGED);
|
|
if(!imgcmp1.data) {
|
|
cout << "Could not open or find file" << endl;
|
|
return -1;
|
|
}
|
|
|
|
Mat imgcmp2 = imread("LR_06.png", IMREAD_UNCHANGED);
|
|
if(!imgcmp2.data) {
|
|
cout << "Could not open or find file" << endl;
|
|
return -1;
|
|
}
|
|
comparePixelVsFeature(imgcmp1, imgcmp2);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|