OpenCV_4.2.0/opencv_contrib-4.2.0/modules/optflow/samples/gpc_train_sintel.py

61 lines
2.0 KiB
Python

import argparse
import glob
import os
import subprocess
FRAME_DIST = 2
assert (FRAME_DIST >= 1)
def execute(cmd):
popen = subprocess.Popen(cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
for stdout_line in iter(popen.stdout.readline, ''):
print(stdout_line.rstrip())
for stderr_line in iter(popen.stderr.readline, ''):
print(stderr_line.rstrip())
popen.stdout.close()
popen.stderr.close()
return_code = popen.wait()
if return_code != 0:
raise subprocess.CalledProcessError(return_code, cmd)
def main():
parser = argparse.ArgumentParser(
description='Train Global Patch Collider using MPI Sintel dataset')
parser.add_argument(
'--bin_path',
help='Path to the training executable (example_optflow_gpc_train)',
required=True)
parser.add_argument('--dataset_path',
help='Path to the directory with frames',
required=True)
parser.add_argument('--gt_path',
help='Path to the directory with ground truth flow',
required=True)
parser.add_argument('--descriptor_type',
help='Descriptor type',
type=int,
default=0)
args = parser.parse_args()
seq = glob.glob(os.path.join(args.dataset_path, '*'))
seq.sort()
input_files = []
for s in seq:
seq_name = os.path.basename(s)
frames = glob.glob(os.path.join(s, 'frame*.png'))
frames.sort()
for i in range(0, len(frames) - 1, FRAME_DIST):
gt_flow = os.path.join(args.gt_path, seq_name,
os.path.basename(frames[i])[0:-4] + '.flo')
assert (os.path.isfile(gt_flow))
input_files += [frames[i], frames[i + 1], gt_flow]
execute([args.bin_path, '--descriptor-type=%d' % args.descriptor_type] + input_files)
if __name__ == '__main__':
main()