94 lines
3.8 KiB
C++
94 lines
3.8 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
using namespace cv::face;
|
|
|
|
static bool myDetector( InputArray image, OutputArray ROIs, CascadeClassifier* face_cascade)
|
|
{
|
|
Mat gray;
|
|
std::vector<Rect> faces;
|
|
if(image.channels()>1){
|
|
cvtColor(image.getMat(),gray,COLOR_BGR2GRAY);
|
|
}
|
|
else{
|
|
gray = image.getMat().clone();
|
|
}
|
|
equalizeHist( gray, gray );
|
|
face_cascade->detectMultiScale( gray, faces, 1.1, 3, 0, Size(30, 30) );
|
|
Mat(faces).copyTo(ROIs);
|
|
return true;
|
|
}
|
|
|
|
TEST(CV_Face_FacemarkKazemi, can_create_default) {
|
|
string cascade_name = cvtest::findDataFile("face/lbpcascade_frontalface_improved.xml", true);
|
|
string configfile_name = cvtest::findDataFile("face/config.xml", true);
|
|
CascadeClassifier face_cascade;
|
|
EXPECT_TRUE(face_cascade.load(cascade_name));
|
|
FacemarkKazemi::Params params;
|
|
params.configfile = configfile_name;
|
|
Ptr<FacemarkKazemi> facemark;
|
|
EXPECT_NO_THROW(facemark = FacemarkKazemi::create(params));
|
|
EXPECT_TRUE(facemark->setFaceDetector((cv::face::FN_FaceDetector)myDetector, &face_cascade));
|
|
EXPECT_FALSE(facemark.empty());
|
|
}
|
|
|
|
TEST(CV_Face_FacemarkKazemi, can_loadTrainingData) {
|
|
string filename = cvtest::findDataFile("face/lbpcascade_frontalface_improved.xml", true);
|
|
string configfile_name = cvtest::findDataFile("face/config.xml", true);
|
|
CascadeClassifier face_cascade;
|
|
EXPECT_TRUE(face_cascade.load(filename));
|
|
FacemarkKazemi::Params params;
|
|
params.configfile = configfile_name;
|
|
Ptr<FacemarkKazemi> facemark;
|
|
EXPECT_NO_THROW(facemark = FacemarkKazemi::create(params));
|
|
EXPECT_TRUE(facemark->setFaceDetector((cv::face::FN_FaceDetector)myDetector, &face_cascade));
|
|
vector<String> filenames;
|
|
filename = cvtest::findDataFile("face/1.txt", true);
|
|
filenames.push_back(filename);
|
|
filename = cvtest::findDataFile("face/2.txt", true);
|
|
filenames.push_back(filename);
|
|
vector<String> imagenames;
|
|
vector< vector<Point2f> > trainlandmarks,Trainlandmarks;
|
|
vector<Rect> rectangles;
|
|
//Test getData function
|
|
EXPECT_NO_THROW(loadTrainingData(filenames,trainlandmarks,imagenames));
|
|
vector<Mat> trainimages;
|
|
for(unsigned long i=0;i<imagenames.size();i++){
|
|
string img = cvtest::findDataFile(imagenames[i], true);
|
|
Mat src = imread(img);
|
|
EXPECT_TRUE(!src.empty());
|
|
trainimages.push_back(src);
|
|
Trainlandmarks.push_back(trainlandmarks[i]);
|
|
}
|
|
string modelfilename = "face_landmark_model.dat";
|
|
Size scale = Size(460,460);
|
|
EXPECT_TRUE(facemark->training(trainimages,Trainlandmarks,configfile_name,scale,modelfilename));
|
|
}
|
|
TEST(CV_Face_FacemarkKazemi, can_detect_landmarks) {
|
|
string cascade_name = cvtest::findDataFile("face/lbpcascade_frontalface_improved.xml", true);
|
|
CascadeClassifier face_cascade;
|
|
face_cascade.load(cascade_name);
|
|
FacemarkKazemi::Params params;
|
|
Ptr<FacemarkKazemi> facemark;
|
|
EXPECT_NO_THROW(facemark = FacemarkKazemi::create(params));
|
|
EXPECT_TRUE(facemark->setFaceDetector((cv::face::FN_FaceDetector)myDetector, &face_cascade));
|
|
string imgname = cvtest::findDataFile("face/detect.jpg");
|
|
string modelfilename = cvtest::findDataFile("face/face_landmark_model.dat",true);
|
|
Mat img = imread(imgname);
|
|
EXPECT_TRUE(!img.empty());
|
|
EXPECT_FALSE(facemark.empty());
|
|
EXPECT_NO_THROW(facemark->loadModel(modelfilename));
|
|
vector<Rect> faces;
|
|
//Detect faces in the current image
|
|
EXPECT_TRUE(facemark->getFaces(img,faces));
|
|
//vector to store the landmarks of all the faces in the image
|
|
vector< vector<Point2f> > shapes;
|
|
EXPECT_NO_THROW(facemark->fit(img,faces,shapes));
|
|
shapes.clear();
|
|
}
|
|
|
|
}} // namespace
|