48 lines
1.6 KiB
Python
48 lines
1.6 KiB
Python
from skimage import io, transform
|
|
from multiprocessing.dummy import Pool as ThreadPool
|
|
|
|
def rescale(root_new, root_old, img_path, ann_path, out_shape):
|
|
try:
|
|
img = io.imread(root_old+"/"+img_path)
|
|
except Exception as E:
|
|
print E
|
|
h, w, _ = img.shape
|
|
f_h, f_w = float(out_shape)/h, float(out_shape)/w
|
|
trans_img = transform.rescale(img, (f_h, f_w))
|
|
num_objs = 0
|
|
with open(root_old+"/"+ann_path, 'r') as f:
|
|
ann = f.readline()
|
|
ann = ann.rstrip()
|
|
ann = ann.split(' ')
|
|
ann = [float(i) for i in ann]
|
|
num_objs = len(ann) / 5
|
|
for idx in xrange(num_objs):
|
|
ann[idx * 5 + 0] = int(f_w * ann[idx * 5 + 0])
|
|
ann[idx * 5 + 1] = int(f_h * ann[idx * 5 + 1])
|
|
ann[idx * 5 + 2] = int(f_w * ann[idx * 5 + 2])
|
|
ann[idx * 5 + 3] = int(f_h * ann[idx * 5 + 3])
|
|
# Write the new annotations to file
|
|
with open(root_new+"/"+ann_path, 'w') as f_new:
|
|
for val in ann:
|
|
f_new.write(str(val)+' ')
|
|
# Save the new image
|
|
io.imwrite(root_new+"/"+img_path, trans_img)
|
|
|
|
def preprocess():
|
|
source = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize/source.txt'
|
|
root_old = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012'
|
|
root_new = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize'
|
|
out_shape = 416
|
|
with open(source, 'r') as src:
|
|
lines = src.readlines()
|
|
print 'Processing {} images and annotations'.format(len(lines))
|
|
for line in lines:
|
|
line = line.rstrip()
|
|
line = line.split(' ')
|
|
img_path = line[0]
|
|
ann_path = line[1]
|
|
rescale(root_new, root_old, img_path, ann_path, out_shape)
|
|
|
|
if __name__ == '__main__':
|
|
preprocess()
|