OpenCV_4.2.0/opencv_contrib-4.2.0/modules/dnn_objdetect/scripts/k_means.py

99 lines
3.3 KiB
Python

import argparse
import sys
import os
import time
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
def k_means(K, data, max_iter, n_jobs, image_file):
X = np.array(data)
np.random.shuffle(X)
begin = time.time()
print 'Running kmeans'
kmeans = KMeans(n_clusters=K, max_iter=max_iter, n_jobs=n_jobs, verbose=1).fit(X)
print 'K-Means took {} seconds to complete'.format(time.time()-begin)
step_size = 0.2
xmin, xmax = X[:, 0].min()-1, X[:, 0].max()+1
ymin, ymax = X[:, 1].min()-1, X[:, 1].max()+1
xx, yy = np.meshgrid(np.arange(xmin, xmax, step_size), np.arange(ymin, ymax, step_size))
preds = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
preds = preds.reshape(xx.shape)
plt.figure()
plt.clf()
plt.imshow(preds, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower')
plt.plot(X[:, 0], X[:, 1], 'k.', markersize=2)
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=5, color='r', zorder=10)
plt.title("Anchor shapes generated using K-Means")
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)
print 'Mean centroids are:'
for i, center in enumerate(centroids):
print '{}: {}, {}'.format(i, center[0], center[1])
# plt.xticks(())
# plt.yticks(())
plt.show()
def pre_process(directory, data_list):
if not os.path.exists(directory):
print "Path {} doesn't exist".format(directory)
return
files = os.listdir(directory)
print 'Loading data...'
for i, f in enumerate(files):
# Progress bar
sys.stdout.write('\r')
percentage = (i+1.0) / len(files)
progress = int(percentage * 30)
bar = [progress*'=', ' '*(29-progress), percentage*100]
sys.stdout.write('[{}>{}] {:.0f}%'.format(*bar))
sys.stdout.flush()
with open(directory+"/"+f, 'r') as ann:
l = ann.readline()
l = l.rstrip()
l = l.split(' ')
l = [float(i) for i in l]
if len(l) % 5 != 0:
sys.stderr.write('File {} contains incorrect number of annotations'.format(f))
return
num_objs = len(l) / 5
for obj in range(num_objs):
xmin = l[obj * 5 + 0]
ymin = l[obj * 5 + 1]
xmax = l[obj * 5 + 2]
ymax = l[obj * 5 + 3]
w = xmax - xmin
h = ymax - ymin
data_list.append([w, h])
if w > 1000 or h > 1000:
sys.stdout.write("[{}, {}]".format(w, h))
sys.stdout.write('\nProcessed {} files containing {} objects'.format(len(files), len(data_list)))
return data_list
def main():
parser = argparse.ArgumentParser("Parse hyperparameters")
parser.add_argument("clusters", help="Number of clusters", type=int)
parser.add_argument("dir", help="Directory containing annotations")
parser.add_argument("image_file", help="File to generate the final cluster of image")
parser.add_argument('-jobs', help="Number of jobs for parallel computation", default=1)
parser.add_argument('-iter', help="Max Iterations to run algorithm for", default=1000)
p = parser.parse_args(sys.argv[1:])
K = p.clusters
directory = p.dir
data_list = []
pre_process(directory, data_list )
sys.stdout.write('\nDone collecting data\n')
k_means(K, data_list, int(p.iter), int(p.jobs), p.image_file)
print 'Done !'
if __name__=='__main__':
try:
main()
except Exception as E:
print E