135 lines
5.8 KiB
Python
135 lines
5.8 KiB
Python
import argparse
|
|
import cv2 as cv
|
|
import glob
|
|
import numpy as np
|
|
import os
|
|
import time
|
|
|
|
|
|
# This tool is intended for evaluation of different background subtraction algorithms presented in OpenCV.
|
|
# Several presets with different settings are available. You can see them below.
|
|
# This tool measures quality metrics as well as speed.
|
|
|
|
|
|
ALGORITHMS_TO_EVALUATE = [
|
|
(cv.bgsegm.createBackgroundSubtractorMOG, 'MOG', {}),
|
|
(cv.bgsegm.createBackgroundSubtractorGMG, 'GMG', {}),
|
|
(cv.bgsegm.createBackgroundSubtractorCNT, 'CNT', {}),
|
|
(cv.bgsegm.createBackgroundSubtractorLSBP, 'LSBP-vanilla', {'nSamples': 20, 'LSBPRadius': 4, 'Tlower': 2.0, 'Tupper': 200.0, 'Tinc': 1.0, 'Tdec': 0.05, 'Rscale': 5.0, 'Rincdec': 0.05, 'LSBPthreshold': 8}),
|
|
(cv.bgsegm.createBackgroundSubtractorLSBP, 'LSBP-speed', {'nSamples': 10, 'LSBPRadius': 16, 'Tlower': 2.0, 'Tupper': 32.0, 'Tinc': 1.0, 'Tdec': 0.05, 'Rscale': 10.0, 'Rincdec': 0.005, 'LSBPthreshold': 8}),
|
|
(cv.bgsegm.createBackgroundSubtractorLSBP, 'LSBP-quality', {'nSamples': 20, 'LSBPRadius': 16, 'Tlower': 2.0, 'Tupper': 32.0, 'Tinc': 1.0, 'Tdec': 0.05, 'Rscale': 10.0, 'Rincdec': 0.005, 'LSBPthreshold': 8}),
|
|
(cv.bgsegm.createBackgroundSubtractorLSBP, 'LSBP-camera-motion-compensation', {'mc': 1}),
|
|
(cv.bgsegm.createBackgroundSubtractorGSOC, 'GSOC', {}),
|
|
(cv.bgsegm.createBackgroundSubtractorGSOC, 'GSOC-camera-motion-compensation', {'mc': 1})
|
|
]
|
|
|
|
|
|
def contains_relevant_files(root):
|
|
return os.path.isdir(os.path.join(root, 'groundtruth')) and os.path.isdir(os.path.join(root, 'input'))
|
|
|
|
|
|
def find_relevant_dirs(root):
|
|
relevant_dirs = []
|
|
for d in sorted(os.listdir(root)):
|
|
d = os.path.join(root, d)
|
|
if os.path.isdir(d):
|
|
if contains_relevant_files(d):
|
|
relevant_dirs += [d]
|
|
else:
|
|
relevant_dirs += find_relevant_dirs(d)
|
|
return relevant_dirs
|
|
|
|
|
|
def load_sequence(root):
|
|
gt_dir, frames_dir = os.path.join(root, 'groundtruth'), os.path.join(root, 'input')
|
|
gt = sorted(glob.glob(os.path.join(gt_dir, '*.png')))
|
|
f = sorted(glob.glob(os.path.join(frames_dir, '*.jpg')))
|
|
assert(len(gt) == len(f))
|
|
return gt, f
|
|
|
|
|
|
def evaluate_algorithm(gt, frames, algo, algo_arguments):
|
|
bgs = algo(**algo_arguments)
|
|
mask = []
|
|
t_start = time.time()
|
|
|
|
for i in range(len(gt)):
|
|
frame = np.uint8(cv.imread(frames[i], cv.IMREAD_COLOR))
|
|
mask.append(bgs.apply(frame))
|
|
|
|
average_duration = (time.time() - t_start) / len(gt)
|
|
average_precision, average_recall, average_f1, average_accuracy = [], [], [], []
|
|
|
|
for i in range(len(gt)):
|
|
gt_mask = np.uint8(cv.imread(gt[i], cv.IMREAD_GRAYSCALE))
|
|
roi = ((gt_mask == 255) | (gt_mask == 0))
|
|
if roi.sum() > 0:
|
|
gt_answer, answer = gt_mask[roi], mask[i][roi]
|
|
|
|
tp = ((answer == 255) & (gt_answer == 255)).sum()
|
|
tn = ((answer == 0) & (gt_answer == 0)).sum()
|
|
fp = ((answer == 255) & (gt_answer == 0)).sum()
|
|
fn = ((answer == 0) & (gt_answer == 255)).sum()
|
|
|
|
if tp + fp > 0:
|
|
average_precision.append(float(tp) / (tp + fp))
|
|
if tp + fn > 0:
|
|
average_recall.append(float(tp) / (tp + fn))
|
|
if tp + fn + fp > 0:
|
|
average_f1.append(2.0 * tp / (2.0 * tp + fn + fp))
|
|
average_accuracy.append(float(tp + tn) / (tp + tn + fp + fn))
|
|
|
|
return average_duration, np.mean(average_precision), np.mean(average_recall), np.mean(average_f1), np.mean(average_accuracy)
|
|
|
|
|
|
def evaluate_on_sequence(seq, summary):
|
|
gt, frames = load_sequence(seq)
|
|
category, video_name = os.path.basename(os.path.dirname(seq)), os.path.basename(seq)
|
|
print('=== %s:%s ===' % (category, video_name))
|
|
|
|
for algo, algo_name, algo_arguments in ALGORITHMS_TO_EVALUATE:
|
|
print('Algorithm name: %s' % algo_name)
|
|
sec_per_step, precision, recall, f1, accuracy = evaluate_algorithm(gt, frames, algo, algo_arguments)
|
|
print('Average accuracy: %.3f' % accuracy)
|
|
print('Average precision: %.3f' % precision)
|
|
print('Average recall: %.3f' % recall)
|
|
print('Average F1: %.3f' % f1)
|
|
print('Average sec. per step: %.4f' % sec_per_step)
|
|
print('')
|
|
|
|
if category not in summary:
|
|
summary[category] = {}
|
|
if algo_name not in summary[category]:
|
|
summary[category][algo_name] = []
|
|
summary[category][algo_name].append((precision, recall, f1, accuracy))
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Evaluate all background subtractors using Change Detection 2014 dataset')
|
|
parser.add_argument('--dataset_path', help='Path to the directory with dataset. It may contain multiple inner directories. It will be scanned recursively.', required=True)
|
|
parser.add_argument('--algorithm', help='Test particular algorithm instead of all.')
|
|
|
|
args = parser.parse_args()
|
|
dataset_dirs = find_relevant_dirs(args.dataset_path)
|
|
assert len(dataset_dirs) > 0, ("Passed directory must contain at least one sequence from the Change Detection dataset. There is no relevant directories in %s. Check that this directory is correct." % (args.dataset_path))
|
|
if args.algorithm is not None:
|
|
global ALGORITHMS_TO_EVALUATE
|
|
ALGORITHMS_TO_EVALUATE = filter(lambda a: a[1].lower() == args.algorithm.lower(), ALGORITHMS_TO_EVALUATE)
|
|
summary = {}
|
|
|
|
for seq in dataset_dirs:
|
|
evaluate_on_sequence(seq, summary)
|
|
|
|
for category in summary:
|
|
for algo_name in summary[category]:
|
|
summary[category][algo_name] = np.mean(summary[category][algo_name], axis=0)
|
|
|
|
for category in summary:
|
|
print('=== SUMMARY for %s (Precision, Recall, F1, Accuracy) ===' % category)
|
|
for algo_name in summary[category]:
|
|
print('%05s: %.3f %.3f %.3f %.3f' % ((algo_name,) + tuple(summary[category][algo_name])))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|