OpenCV_4.2.0/opencv_contrib-4.2.0/modules/face/src/eigen_faces.cpp

140 lines
5.7 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>.
* Released to public domain under terms of the BSD Simplified license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "precomp.hpp"
#include <opencv2/face.hpp>
#include "face_utils.hpp"
#include <set>
#include <limits>
#include <iostream>
namespace cv
{
namespace face
{
// Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of
// Cognitive Neuroscience 3 (1991), 7186.
class Eigenfaces : public EigenFaceRecognizer
{
public:
// Initializes an empty Eigenfaces model.
Eigenfaces(int num_components = 0, double threshold = DBL_MAX)
//: BasicFaceRecognizerImpl(num_components, threshold)
{
_num_components = num_components;
_threshold = threshold;
}
// Computes an Eigenfaces model with images in src and corresponding labels
// in labels.
void train(InputArrayOfArrays src, InputArray labels) CV_OVERRIDE;
// Send all predict results to caller side for custom result handling
void predict(InputArray src, Ptr<PredictCollector> collector) const CV_OVERRIDE;
String getDefaultName() const CV_OVERRIDE
{
return "opencv_eigenfaces";
}
};
//------------------------------------------------------------------------------
// Eigenfaces
//------------------------------------------------------------------------------
void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) {
if(_src.total() == 0) {
String error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(Error::StsBadArg, error_message);
} else if(_local_labels.getMat().type() != CV_32SC1) {
String error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _local_labels.type());
CV_Error(Error::StsBadArg, error_message);
}
// make sure data has correct size
if(_src.total() > 1) {
for(int i = 1; i < static_cast<int>(_src.total()); i++) {
if(_src.getMat(i-1).total() != _src.getMat(i).total()) {
String error_message = format("In the Eigenfaces method all input samples (training images) must be of equal size! Expected %zu pixels, but was %zu pixels.", _src.getMat(i-1).total(), _src.getMat(i).total());
CV_Error(Error::StsUnsupportedFormat, error_message);
}
}
}
// get labels
Mat labels = _local_labels.getMat();
// observations in row
Mat data = asRowMatrix(_src, CV_64FC1);
// number of samples
int n = data.rows;
// assert there are as much samples as labels
if(static_cast<int>(labels.total()) != n) {
String error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%zu.", n, labels.total());
CV_Error(Error::StsBadArg, error_message);
}
// clear existing model data
_labels.release();
_projections.clear();
// clip number of components to be valid
if((_num_components <= 0) || (_num_components > n))
_num_components = n;
// perform the PCA
PCA pca(data, Mat(), PCA::DATA_AS_ROW, _num_components);
// copy the PCA results
_mean = pca.mean.reshape(1,1); // store the mean vector
_eigenvalues = pca.eigenvalues.clone(); // eigenvalues by row
transpose(pca.eigenvectors, _eigenvectors); // eigenvectors by column
// store labels for prediction
_labels = labels.clone();
// save projections
for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {
Mat p = LDA::subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));
_projections.push_back(p);
}
}
void Eigenfaces::predict(InputArray _src, Ptr<PredictCollector> collector) const {
// get data
Mat src = _src.getMat();
// make sure the user is passing correct data
if(_projections.empty()) {
// throw error if no data (or simply return -1?)
String error_message = "This Eigenfaces model is not computed yet. Did you call Eigenfaces::train?";
CV_Error(Error::StsError, error_message);
} else if(_eigenvectors.rows != static_cast<int>(src.total())) {
// check data alignment just for clearer exception messages
String error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %zu.", _eigenvectors.rows, src.total());
CV_Error(Error::StsBadArg, error_message);
}
// project into PCA subspace
Mat q = LDA::subspaceProject(_eigenvectors, _mean, src.reshape(1, 1));
collector->init(_projections.size());
for (size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {
double dist = norm(_projections[sampleIdx], q, NORM_L2);
int label = _labels.at<int>((int)sampleIdx);
if (!collector->collect(label, dist))return;
}
}
Ptr<EigenFaceRecognizer> EigenFaceRecognizer::create(int num_components, double threshold)
{
return makePtr<Eigenfaces>(num_components, threshold);
}
}
}