455 lines
18 KiB
C++
455 lines
18 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef OPENCV_CUDAOPTFLOW_HPP
|
|
#define OPENCV_CUDAOPTFLOW_HPP
|
|
|
|
#ifndef __cplusplus
|
|
# error cudaoptflow.hpp header must be compiled as C++
|
|
#endif
|
|
|
|
#include "opencv2/core/cuda.hpp"
|
|
|
|
/**
|
|
@addtogroup cuda
|
|
@{
|
|
@defgroup cudaoptflow Optical Flow
|
|
@}
|
|
*/
|
|
|
|
namespace cv { namespace cuda {
|
|
|
|
//! @addtogroup cudaoptflow
|
|
//! @{
|
|
|
|
//
|
|
// Interface
|
|
//
|
|
|
|
/** @brief Base interface for dense optical flow algorithms.
|
|
*/
|
|
class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
|
|
{
|
|
public:
|
|
/** @brief Calculates a dense optical flow.
|
|
|
|
@param I0 first input image.
|
|
@param I1 second input image of the same size and the same type as I0.
|
|
@param flow computed flow image that has the same size as I0 and type CV_32FC2.
|
|
@param stream Stream for the asynchronous version.
|
|
*/
|
|
CV_WRAP virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0;
|
|
};
|
|
|
|
/** @brief Base interface for sparse optical flow algorithms.
|
|
*/
|
|
class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
|
|
{
|
|
public:
|
|
/** @brief Calculates a sparse optical flow.
|
|
|
|
@param prevImg First input image.
|
|
@param nextImg Second input image of the same size and the same type as prevImg.
|
|
@param prevPts Vector of 2D points for which the flow needs to be found.
|
|
@param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
|
|
@param status Output status vector. Each element of the vector is set to 1 if the
|
|
flow for the corresponding features has been found. Otherwise, it is set to 0.
|
|
@param err Optional output vector that contains error response for each point (inverse confidence).
|
|
@param stream Stream for the asynchronous version.
|
|
*/
|
|
CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
|
|
InputArray prevPts, InputOutputArray nextPts,
|
|
OutputArray status,
|
|
OutputArray err = cv::noArray(),
|
|
Stream& stream = Stream::Null()) = 0;
|
|
};
|
|
/** @brief Base Interface for optical flow algorithms using NVIDIA Optical Flow SDK.
|
|
*/
|
|
class CV_EXPORTS_W NvidiaHWOpticalFlow : public Algorithm
|
|
{
|
|
public:
|
|
/** @brief Calculates Optical Flow using NVIDIA Optical Flow SDK.
|
|
|
|
* NVIDIA GPUs starting with Turing contain a dedicated hardware accelerator for computing optical flow vectors between pairs of images.
|
|
* The optical flow hardware accelerator generates block-based optical flow vectors.
|
|
* The size of the block depends on hardware in use, and can be queried using the function getGridSize().
|
|
* The block-based flow vectors generated by the hardware can be converted to dense representation (i.e. per-pixel flow vectors) using upSampler() helper function, if needed.
|
|
* The flow vectors are stored in CV_16SC2 format with x and y components of each flow vector in 16-bit signed fixed point representation S10.5.
|
|
|
|
@param inputImage Input image.
|
|
@param referenceImage Reference image of the same size and the same type as input image.
|
|
@param flow A buffer consisting of inputImage.Size() / getGridSize() flow vectors in CV_16SC2 format.
|
|
@param stream Stream for the asynchronous version.
|
|
@param hint Hint buffer if client provides external hints. Must have same size as flow buffer.
|
|
Caller can provide flow vectors as hints for optical flow calculation.
|
|
@param cost Cost buffer contains numbers indicating the confidence associated with each of the generated flow vectors.
|
|
Higher the cost, lower the confidence. Cost buffer is of type CV_32SC1.
|
|
|
|
@note
|
|
- Client must use critical sections around each calc() function if calling it from multiple threads.
|
|
*/
|
|
CV_WRAP virtual void calc(
|
|
InputArray inputImage,
|
|
InputArray referenceImage,
|
|
InputOutputArray flow,
|
|
Stream& stream = Stream::Null(),
|
|
InputArray hint = cv::noArray(),
|
|
OutputArray cost = cv::noArray()) = 0;
|
|
|
|
/** @brief Releases all buffers, contexts and device pointers.
|
|
*/
|
|
CV_WRAP virtual void collectGarbage() = 0;
|
|
|
|
/** @brief Returns grid size of output buffer as per the hardware's capability.
|
|
*/
|
|
CV_WRAP virtual int getGridSize() const = 0;
|
|
};
|
|
|
|
//
|
|
// BroxOpticalFlow
|
|
//
|
|
|
|
/** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004).
|
|
*/
|
|
class CV_EXPORTS_W BroxOpticalFlow : public DenseOpticalFlow
|
|
{
|
|
public:
|
|
CV_WRAP virtual double getFlowSmoothness() const = 0;
|
|
CV_WRAP virtual void setFlowSmoothness(double alpha) = 0;
|
|
|
|
CV_WRAP virtual double getGradientConstancyImportance() const = 0;
|
|
CV_WRAP virtual void setGradientConstancyImportance(double gamma) = 0;
|
|
|
|
CV_WRAP virtual double getPyramidScaleFactor() const = 0;
|
|
CV_WRAP virtual void setPyramidScaleFactor(double scale_factor) = 0;
|
|
|
|
//! number of lagged non-linearity iterations (inner loop)
|
|
CV_WRAP virtual int getInnerIterations() const = 0;
|
|
CV_WRAP virtual void setInnerIterations(int inner_iterations) = 0;
|
|
|
|
//! number of warping iterations (number of pyramid levels)
|
|
CV_WRAP virtual int getOuterIterations() const = 0;
|
|
CV_WRAP virtual void setOuterIterations(int outer_iterations) = 0;
|
|
|
|
//! number of linear system solver iterations
|
|
CV_WRAP virtual int getSolverIterations() const = 0;
|
|
CV_WRAP virtual void setSolverIterations(int solver_iterations) = 0;
|
|
|
|
CV_WRAP static Ptr<BroxOpticalFlow> create(
|
|
double alpha = 0.197,
|
|
double gamma = 50.0,
|
|
double scale_factor = 0.8,
|
|
int inner_iterations = 5,
|
|
int outer_iterations = 150,
|
|
int solver_iterations = 10);
|
|
};
|
|
|
|
//
|
|
// PyrLKOpticalFlow
|
|
//
|
|
|
|
/** @brief Class used for calculating a sparse optical flow.
|
|
|
|
The class can calculate an optical flow for a sparse feature set using the
|
|
iterative Lucas-Kanade method with pyramids.
|
|
|
|
@sa calcOpticalFlowPyrLK
|
|
|
|
@note
|
|
- An example of the Lucas Kanade optical flow algorithm can be found at
|
|
opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
|
|
*/
|
|
class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
|
|
{
|
|
public:
|
|
CV_WRAP virtual Size getWinSize() const = 0;
|
|
CV_WRAP virtual void setWinSize(Size winSize) = 0;
|
|
|
|
CV_WRAP virtual int getMaxLevel() const = 0;
|
|
CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
|
|
|
|
CV_WRAP virtual int getNumIters() const = 0;
|
|
CV_WRAP virtual void setNumIters(int iters) = 0;
|
|
|
|
CV_WRAP virtual bool getUseInitialFlow() const = 0;
|
|
CV_WRAP virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
|
|
|
CV_WRAP static Ptr<cuda::SparsePyrLKOpticalFlow> create(
|
|
Size winSize = Size(21, 21),
|
|
int maxLevel = 3,
|
|
int iters = 30,
|
|
bool useInitialFlow = false);
|
|
};
|
|
|
|
/** @brief Class used for calculating a dense optical flow.
|
|
|
|
The class can calculate an optical flow for a dense optical flow using the
|
|
iterative Lucas-Kanade method with pyramids.
|
|
*/
|
|
class CV_EXPORTS_W DensePyrLKOpticalFlow : public DenseOpticalFlow
|
|
{
|
|
public:
|
|
CV_WRAP virtual Size getWinSize() const = 0;
|
|
CV_WRAP virtual void setWinSize(Size winSize) = 0;
|
|
|
|
CV_WRAP virtual int getMaxLevel() const = 0;
|
|
CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
|
|
|
|
CV_WRAP virtual int getNumIters() const = 0;
|
|
CV_WRAP virtual void setNumIters(int iters) = 0;
|
|
|
|
CV_WRAP virtual bool getUseInitialFlow() const = 0;
|
|
CV_WRAP virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
|
|
|
CV_WRAP static Ptr<DensePyrLKOpticalFlow> create(
|
|
Size winSize = Size(13, 13),
|
|
int maxLevel = 3,
|
|
int iters = 30,
|
|
bool useInitialFlow = false);
|
|
};
|
|
|
|
//
|
|
// FarnebackOpticalFlow
|
|
//
|
|
|
|
/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
|
|
*/
|
|
class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
|
|
{
|
|
public:
|
|
CV_WRAP virtual int getNumLevels() const = 0;
|
|
CV_WRAP virtual void setNumLevels(int numLevels) = 0;
|
|
|
|
CV_WRAP virtual double getPyrScale() const = 0;
|
|
CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
|
|
|
|
CV_WRAP virtual bool getFastPyramids() const = 0;
|
|
CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
|
|
|
|
CV_WRAP virtual int getWinSize() const = 0;
|
|
CV_WRAP virtual void setWinSize(int winSize) = 0;
|
|
|
|
CV_WRAP virtual int getNumIters() const = 0;
|
|
CV_WRAP virtual void setNumIters(int numIters) = 0;
|
|
|
|
CV_WRAP virtual int getPolyN() const = 0;
|
|
CV_WRAP virtual void setPolyN(int polyN) = 0;
|
|
|
|
CV_WRAP virtual double getPolySigma() const = 0;
|
|
CV_WRAP virtual void setPolySigma(double polySigma) = 0;
|
|
|
|
CV_WRAP virtual int getFlags() const = 0;
|
|
CV_WRAP virtual void setFlags(int flags) = 0;
|
|
|
|
CV_WRAP static Ptr<cuda::FarnebackOpticalFlow> create(
|
|
int numLevels = 5,
|
|
double pyrScale = 0.5,
|
|
bool fastPyramids = false,
|
|
int winSize = 13,
|
|
int numIters = 10,
|
|
int polyN = 5,
|
|
double polySigma = 1.1,
|
|
int flags = 0);
|
|
};
|
|
|
|
//
|
|
// OpticalFlowDual_TVL1
|
|
//
|
|
|
|
/** @brief Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method.
|
|
*
|
|
* @sa C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
|
* @sa Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
|
*/
|
|
class CV_EXPORTS_W OpticalFlowDual_TVL1 : public DenseOpticalFlow
|
|
{
|
|
public:
|
|
/**
|
|
* Time step of the numerical scheme.
|
|
*/
|
|
CV_WRAP virtual double getTau() const = 0;
|
|
CV_WRAP virtual void setTau(double tau) = 0;
|
|
|
|
/**
|
|
* Weight parameter for the data term, attachment parameter.
|
|
* This is the most relevant parameter, which determines the smoothness of the output.
|
|
* The smaller this parameter is, the smoother the solutions we obtain.
|
|
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
|
|
*/
|
|
CV_WRAP virtual double getLambda() const = 0;
|
|
CV_WRAP virtual void setLambda(double lambda) = 0;
|
|
|
|
/**
|
|
* Weight parameter for (u - v)^2, tightness parameter.
|
|
* It serves as a link between the attachment and the regularization terms.
|
|
* In theory, it should have a small value in order to maintain both parts in correspondence.
|
|
* The method is stable for a large range of values of this parameter.
|
|
*/
|
|
CV_WRAP virtual double getGamma() const = 0;
|
|
CV_WRAP virtual void setGamma(double gamma) = 0;
|
|
|
|
/**
|
|
* parameter used for motion estimation. It adds a variable allowing for illumination variations
|
|
* Set this parameter to 1. if you have varying illumination.
|
|
* See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
|
|
* Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145
|
|
*/
|
|
CV_WRAP virtual double getTheta() const = 0;
|
|
CV_WRAP virtual void setTheta(double theta) = 0;
|
|
|
|
/**
|
|
* Number of scales used to create the pyramid of images.
|
|
*/
|
|
CV_WRAP virtual int getNumScales() const = 0;
|
|
CV_WRAP virtual void setNumScales(int nscales) = 0;
|
|
|
|
/**
|
|
* Number of warpings per scale.
|
|
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
|
|
* This is a parameter that assures the stability of the method.
|
|
* It also affects the running time, so it is a compromise between speed and accuracy.
|
|
*/
|
|
CV_WRAP virtual int getNumWarps() const = 0;
|
|
CV_WRAP virtual void setNumWarps(int warps) = 0;
|
|
|
|
/**
|
|
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
|
|
* A small value will yield more accurate solutions at the expense of a slower convergence.
|
|
*/
|
|
CV_WRAP virtual double getEpsilon() const = 0;
|
|
CV_WRAP virtual void setEpsilon(double epsilon) = 0;
|
|
|
|
/**
|
|
* Stopping criterion iterations number used in the numerical scheme.
|
|
*/
|
|
CV_WRAP virtual int getNumIterations() const = 0;
|
|
CV_WRAP virtual void setNumIterations(int iterations) = 0;
|
|
|
|
CV_WRAP virtual double getScaleStep() const = 0;
|
|
CV_WRAP virtual void setScaleStep(double scaleStep) = 0;
|
|
|
|
CV_WRAP virtual bool getUseInitialFlow() const = 0;
|
|
CV_WRAP virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
|
|
|
CV_WRAP static Ptr<OpticalFlowDual_TVL1> create(
|
|
double tau = 0.25,
|
|
double lambda = 0.15,
|
|
double theta = 0.3,
|
|
int nscales = 5,
|
|
int warps = 5,
|
|
double epsilon = 0.01,
|
|
int iterations = 300,
|
|
double scaleStep = 0.8,
|
|
double gamma = 0.0,
|
|
bool useInitialFlow = false);
|
|
};
|
|
|
|
//
|
|
// NvidiaOpticalFlow
|
|
//
|
|
|
|
/** @brief Class for computing the optical flow vectors between two images using NVIDIA Optical Flow hardware and Optical Flow SDK 1.0.
|
|
@note
|
|
- A sample application demonstrating the use of NVIDIA Optical Flow can be found at
|
|
opencv_source_code/samples/gpu/nvidia_optical_flow.cpp
|
|
- An example application comparing accuracy and performance of NVIDIA Optical Flow with other optical flow algorithms in OpenCV can be found at
|
|
opencv_source_code/samples/gpu/optical_flow.cpp
|
|
*/
|
|
|
|
class CV_EXPORTS_W NvidiaOpticalFlow_1_0 : public NvidiaHWOpticalFlow
|
|
{
|
|
public:
|
|
/**
|
|
* Supported optical flow performance levels.
|
|
*/
|
|
enum NVIDIA_OF_PERF_LEVEL
|
|
{
|
|
NV_OF_PERF_LEVEL_UNDEFINED,
|
|
NV_OF_PERF_LEVEL_SLOW = 5, /**< Slow perf level results in lowest performance and best quality */
|
|
NV_OF_PERF_LEVEL_MEDIUM = 10, /**< Medium perf level results in low performance and medium quality */
|
|
NV_OF_PERF_LEVEL_FAST = 20, /**< Fast perf level results in high performance and low quality */
|
|
NV_OF_PERF_LEVEL_MAX
|
|
};
|
|
|
|
/** @brief The NVIDIA optical flow hardware generates flow vectors at granularity gridSize, which can be queried via function getGridSize().
|
|
* Upsampler() helper function converts the hardware-generated flow vectors to dense representation (1 flow vector for each pixel)
|
|
* using nearest neighbour upsampling method.
|
|
|
|
@param flow Buffer of type CV_16FC2 containing flow vectors generated by calc().
|
|
@param width Width of the input image in pixels for which these flow vectors were generated.
|
|
@param height Height of the input image in pixels for which these flow vectors were generated.
|
|
@param gridSize Granularity of the optical flow vectors returned by calc() function. Can be queried using getGridSize().
|
|
@param upsampledFlow Buffer of type CV_32FC2, containing upsampled flow vectors, each flow vector for 1 pixel, in the pitch-linear layout.
|
|
*/
|
|
CV_WRAP virtual void upSampler(InputArray flow, int width, int height,
|
|
int gridSize, InputOutputArray upsampledFlow) = 0;
|
|
|
|
/** @brief Instantiate NVIDIA Optical Flow
|
|
|
|
@param width Width of input image in pixels.
|
|
@param height Height of input image in pixels.
|
|
@param perfPreset Optional parameter. Refer [NV OF SDK documentation](https://developer.nvidia.com/opticalflow-sdk) for details about presets.
|
|
Defaults to NV_OF_PERF_LEVEL_SLOW.
|
|
@param enableTemporalHints Optional parameter. Flag to enable temporal hints. When set to true, the hardware uses the flow vectors
|
|
generated in previous call to calc() as internal hints for the current call to calc().
|
|
Useful when computing flow vectors between successive video frames. Defaults to false.
|
|
@param enableExternalHints Optional Parameter. Flag to enable passing external hints buffer to calc(). Defaults to false.
|
|
@param enableCostBuffer Optional Parameter. Flag to enable cost buffer output from calc(). Defaults to false.
|
|
@param gpuId Optional parameter to select the GPU ID on which the optical flow should be computed. Useful in multi-GPU systems. Defaults to 0.
|
|
*/
|
|
CV_WRAP static Ptr<NvidiaOpticalFlow_1_0> create(
|
|
int width,
|
|
int height,
|
|
cv::cuda::NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL perfPreset
|
|
= cv::cuda::NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_SLOW,
|
|
bool enableTemporalHints = false,
|
|
bool enableExternalHints = false,
|
|
bool enableCostBuffer = false,
|
|
int gpuId = 0);
|
|
};
|
|
|
|
//! @}
|
|
|
|
}} // namespace cv { namespace cuda {
|
|
|
|
#endif /* OPENCV_CUDAOPTFLOW_HPP */
|