284 lines
11 KiB
C++
284 lines
11 KiB
C++
#ifndef __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__
|
|
#define __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__
|
|
|
|
#include <opencv2/dnn.hpp>
|
|
#include <opencv2/dnn/shape_utils.hpp> // getPlane
|
|
|
|
//! [InterpLayer]
|
|
class InterpLayer : public cv::dnn::Layer
|
|
{
|
|
public:
|
|
InterpLayer(const cv::dnn::LayerParams ¶ms) : Layer(params)
|
|
{
|
|
outWidth = params.get<int>("width", 0);
|
|
outHeight = params.get<int>("height", 0);
|
|
}
|
|
|
|
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params)
|
|
{
|
|
return cv::Ptr<cv::dnn::Layer>(new InterpLayer(params));
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<std::vector<int> > &outputs,
|
|
std::vector<std::vector<int> > &internals) const CV_OVERRIDE
|
|
{
|
|
CV_UNUSED(requiredOutputs); CV_UNUSED(internals);
|
|
std::vector<int> outShape(4);
|
|
outShape[0] = inputs[0][0]; // batch size
|
|
outShape[1] = inputs[0][1]; // number of channels
|
|
outShape[2] = outHeight;
|
|
outShape[3] = outWidth;
|
|
outputs.assign(1, outShape);
|
|
return false;
|
|
}
|
|
|
|
// Implementation of this custom layer is based on https://github.com/cdmh/deeplab-public/blob/master/src/caffe/layers/interp_layer.cpp
|
|
virtual void forward(cv::InputArrayOfArrays inputs_arr,
|
|
cv::OutputArrayOfArrays outputs_arr,
|
|
cv::OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
// In case of DNN_TARGET_OPENCL_FP16 target the following method
|
|
// converts data from FP16 to FP32 and calls this forward again.
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<cv::Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
cv::Mat& inp = inputs[0];
|
|
cv::Mat& out = outputs[0];
|
|
const float* inpData = (float*)inp.data;
|
|
float* outData = (float*)out.data;
|
|
|
|
const int batchSize = inp.size[0];
|
|
const int numChannels = inp.size[1];
|
|
const int inpHeight = inp.size[2];
|
|
const int inpWidth = inp.size[3];
|
|
|
|
const float rheight = (outHeight > 1) ? static_cast<float>(inpHeight - 1) / (outHeight - 1) : 0.f;
|
|
const float rwidth = (outWidth > 1) ? static_cast<float>(inpWidth - 1) / (outWidth - 1) : 0.f;
|
|
for (int h2 = 0; h2 < outHeight; ++h2)
|
|
{
|
|
const float h1r = rheight * h2;
|
|
const int h1 = static_cast<int>(h1r);
|
|
const int h1p = (h1 < inpHeight - 1) ? 1 : 0;
|
|
const float h1lambda = h1r - h1;
|
|
const float h0lambda = 1.f - h1lambda;
|
|
for (int w2 = 0; w2 < outWidth; ++w2)
|
|
{
|
|
const float w1r = rwidth * w2;
|
|
const int w1 = static_cast<int>(w1r);
|
|
const int w1p = (w1 < inpWidth - 1) ? 1 : 0;
|
|
const float w1lambda = w1r - w1;
|
|
const float w0lambda = 1.f - w1lambda;
|
|
const float* pos1 = inpData + h1 * inpWidth + w1;
|
|
float* pos2 = outData + h2 * outWidth + w2;
|
|
for (int c = 0; c < batchSize * numChannels; ++c)
|
|
{
|
|
pos2[0] =
|
|
h0lambda * (w0lambda * pos1[0] + w1lambda * pos1[w1p]) +
|
|
h1lambda * (w0lambda * pos1[h1p * inpWidth] + w1lambda * pos1[h1p * inpWidth + w1p]);
|
|
pos1 += inpWidth * inpHeight;
|
|
pos2 += outWidth * outHeight;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
int outWidth, outHeight;
|
|
};
|
|
//! [InterpLayer]
|
|
|
|
//! [ResizeBilinearLayer]
|
|
class ResizeBilinearLayer CV_FINAL : public cv::dnn::Layer
|
|
{
|
|
public:
|
|
ResizeBilinearLayer(const cv::dnn::LayerParams ¶ms) : Layer(params)
|
|
{
|
|
CV_Assert(!params.get<bool>("align_corners", false));
|
|
CV_Assert(!blobs.empty());
|
|
|
|
for (size_t i = 0; i < blobs.size(); ++i)
|
|
CV_Assert(blobs[i].type() == CV_32SC1);
|
|
|
|
// There are two cases of input blob: a single blob which contains output
|
|
// shape and two blobs with scaling factors.
|
|
if (blobs.size() == 1)
|
|
{
|
|
CV_Assert(blobs[0].total() == 2);
|
|
outHeight = blobs[0].at<int>(0, 0);
|
|
outWidth = blobs[0].at<int>(0, 1);
|
|
factorHeight = factorWidth = 0;
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(blobs.size() == 2); CV_Assert(blobs[0].total() == 1); CV_Assert(blobs[1].total() == 1);
|
|
factorHeight = blobs[0].at<int>(0, 0);
|
|
factorWidth = blobs[1].at<int>(0, 0);
|
|
outHeight = outWidth = 0;
|
|
}
|
|
}
|
|
|
|
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params)
|
|
{
|
|
return cv::Ptr<cv::dnn::Layer>(new ResizeBilinearLayer(params));
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
|
|
const int,
|
|
std::vector<std::vector<int> > &outputs,
|
|
std::vector<std::vector<int> > &) const CV_OVERRIDE
|
|
{
|
|
std::vector<int> outShape(4);
|
|
outShape[0] = inputs[0][0]; // batch size
|
|
outShape[1] = inputs[0][1]; // number of channels
|
|
outShape[2] = outHeight != 0 ? outHeight : (inputs[0][2] * factorHeight);
|
|
outShape[3] = outWidth != 0 ? outWidth : (inputs[0][3] * factorWidth);
|
|
outputs.assign(1, outShape);
|
|
return false;
|
|
}
|
|
|
|
virtual void finalize(cv::InputArrayOfArrays, cv::OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
std::vector<cv::Mat> outputs;
|
|
outputs_arr.getMatVector(outputs);
|
|
if (!outWidth && !outHeight)
|
|
{
|
|
outHeight = outputs[0].size[2];
|
|
outWidth = outputs[0].size[3];
|
|
}
|
|
}
|
|
|
|
// This implementation is based on a reference implementation from
|
|
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
|
|
virtual void forward(cv::InputArrayOfArrays inputs_arr,
|
|
cv::OutputArrayOfArrays outputs_arr,
|
|
cv::OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
// In case of DNN_TARGET_OPENCL_FP16 target the following method
|
|
// converts data from FP16 to FP32 and calls this forward again.
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<cv::Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
cv::Mat& inp = inputs[0];
|
|
cv::Mat& out = outputs[0];
|
|
const float* inpData = (float*)inp.data;
|
|
float* outData = (float*)out.data;
|
|
|
|
const int batchSize = inp.size[0];
|
|
const int numChannels = inp.size[1];
|
|
const int inpHeight = inp.size[2];
|
|
const int inpWidth = inp.size[3];
|
|
|
|
float heightScale = static_cast<float>(inpHeight) / outHeight;
|
|
float widthScale = static_cast<float>(inpWidth) / outWidth;
|
|
for (int b = 0; b < batchSize; ++b)
|
|
{
|
|
for (int y = 0; y < outHeight; ++y)
|
|
{
|
|
float input_y = y * heightScale;
|
|
int y0 = static_cast<int>(std::floor(input_y));
|
|
int y1 = std::min(y0 + 1, inpHeight - 1);
|
|
for (int x = 0; x < outWidth; ++x)
|
|
{
|
|
float input_x = x * widthScale;
|
|
int x0 = static_cast<int>(std::floor(input_x));
|
|
int x1 = std::min(x0 + 1, inpWidth - 1);
|
|
for (int c = 0; c < numChannels; ++c)
|
|
{
|
|
float interpolation =
|
|
inpData[offset(inp.size, c, x0, y0, b)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) +
|
|
inpData[offset(inp.size, c, x0, y1, b)] * (input_y - y0) * (1 - (input_x - x0)) +
|
|
inpData[offset(inp.size, c, x1, y0, b)] * (1 - (input_y - y0)) * (input_x - x0) +
|
|
inpData[offset(inp.size, c, x1, y1, b)] * (input_y - y0) * (input_x - x0);
|
|
outData[offset(out.size, c, x, y, b)] = interpolation;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
static inline int offset(const cv::MatSize& size, int c, int x, int y, int b)
|
|
{
|
|
return x + size[3] * (y + size[2] * (c + size[1] * b));
|
|
}
|
|
|
|
int outWidth, outHeight, factorWidth, factorHeight;
|
|
};
|
|
//! [ResizeBilinearLayer]
|
|
|
|
//
|
|
// The following code is used only to generate tutorials documentation.
|
|
//
|
|
|
|
//! [A custom layer interface]
|
|
class MyLayer : public cv::dnn::Layer
|
|
{
|
|
public:
|
|
//! [MyLayer::MyLayer]
|
|
MyLayer(const cv::dnn::LayerParams ¶ms);
|
|
//! [MyLayer::MyLayer]
|
|
|
|
//! [MyLayer::create]
|
|
static cv::Ptr<cv::dnn::Layer> create(cv::dnn::LayerParams& params);
|
|
//! [MyLayer::create]
|
|
|
|
//! [MyLayer::getMemoryShapes]
|
|
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<std::vector<int> > &outputs,
|
|
std::vector<std::vector<int> > &internals) const CV_OVERRIDE;
|
|
//! [MyLayer::getMemoryShapes]
|
|
|
|
//! [MyLayer::forward]
|
|
virtual void forward(cv::InputArrayOfArrays inputs,
|
|
cv::OutputArrayOfArrays outputs,
|
|
cv::OutputArrayOfArrays internals) CV_OVERRIDE;
|
|
//! [MyLayer::forward]
|
|
|
|
//! [MyLayer::finalize]
|
|
virtual void finalize(cv::InputArrayOfArrays inputs,
|
|
cv::OutputArrayOfArrays outputs) CV_OVERRIDE;
|
|
//! [MyLayer::finalize]
|
|
};
|
|
//! [A custom layer interface]
|
|
|
|
//! [Register a custom layer]
|
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
|
|
|
|
static inline void loadNet()
|
|
{
|
|
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
|
|
// ...
|
|
//! [Register a custom layer]
|
|
|
|
//! [Register InterpLayer]
|
|
CV_DNN_REGISTER_LAYER_CLASS(Interp, InterpLayer);
|
|
cv::dnn::Net caffeNet = cv::dnn::readNet("/path/to/config.prototxt", "/path/to/weights.caffemodel");
|
|
//! [Register InterpLayer]
|
|
|
|
//! [Register ResizeBilinearLayer]
|
|
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
|
|
cv::dnn::Net tfNet = cv::dnn::readNet("/path/to/graph.pb");
|
|
//! [Register ResizeBilinearLayer]
|
|
|
|
if (false) loadNet(); // To prevent unused function warning.
|
|
}
|
|
|
|
#endif // __OPENCV_SAMPLES_DNN_CUSTOM_LAYERS__
|