/* * cropped_word_recognition.cpp * * A demo program of text recognition in a given cropped word. * Shows the use of the OCRBeamSearchDecoder class API using the provided default classifier. * * Created on: Jul 9, 2015 * Author: Lluis Gomez i Bigorda */ #include "opencv2/text.hpp" #include "opencv2/core/utility.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include using namespace std; using namespace cv; using namespace cv::text; int main(int argc, char* argv[]) { cout << endl << argv[0] << endl << endl; cout << "A demo program of Scene Text Character Recognition: " << endl; cout << "Shows the use of the OCRBeamSearchDecoder::ClassifierCallback class using the Single Layer CNN character classifier described in:" << endl; cout << "Coates, Adam, et al. \"Text detection and character recognition in scene images with unsupervised feature learning.\" ICDAR 2011." << endl << endl; Mat image; if(argc>1) image = imread(argv[1]); else { cout << " Usage: " << argv[0] << " " << endl; cout << " the input image must contain a single character (e.g. scenetext_char01.jpg)." << endl << endl; return(0); } string vocabulary = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; // must have the same order as the classifier output classes Ptr ocr = loadOCRHMMClassifierCNN("OCRBeamSearch_CNN_model_data.xml.gz"); double t_r = (double)getTickCount(); vector out_classes; vector out_confidences; ocr->eval(image, out_classes, out_confidences); cout << "OCR output = \"" << vocabulary[out_classes[0]] << "\" with confidence " << out_confidences[0] << ". Evaluated in " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << " ms." << endl << endl; return 0; }