/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2015, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { const string STRUCTURED_LIGHT_DIR = "structured_light"; const string FOLDER_DATA = "data"; /****************************************************************************************\ * Plane test * \****************************************************************************************/ class CV_PlaneTest : public cvtest::BaseTest { public: CV_PlaneTest(); ~CV_PlaneTest(); ////////////////////////////////////////////////////////////////////////////////////////////////// // From rgbd module: since I needed the distance method of plane class, I copied the class from rgb module // it will be made a pull request to make Plane class public /** Structure defining a plane. The notations are from the second paper */ class PlaneBase { public: PlaneBase(const Vec3f & m, const Vec3f &n_in, int index) : index_(index), n_(n_in), m_sum_(Vec3f(0, 0, 0)), m_(m), Q_(Matx33f::zeros()), mse_(0), K_(0) { UpdateD(); } virtual ~PlaneBase() { } /** Compute the distance to the plane. This will be implemented by the children to take into account different * sensor models * @param p_j * @return */ virtual float distance(const Vec3f& p_j) const = 0; /** The d coefficient in the plane equation ax+by+cz+d = 0 * @return */ inline float d() const { return d_; } /** The normal to the plane * @return the normal to the plane */ const Vec3f & n() const { return n_; } /** Update the different coefficients of the plane, based on the new statistics */ void UpdateParameters() { if( empty() ) return; m_ = m_sum_ / K_; // Compute C Matx33f C = Q_ - m_sum_ * m_.t(); // Compute n SVD svd(C); n_ = Vec3f(svd.vt.at(2, 0), svd.vt.at(2, 1), svd.vt.at(2, 2)); mse_ = svd.w.at(2) / K_; UpdateD(); } /** Update the different sum of point and sum of point*point.t() */ void UpdateStatistics(const Vec3f & point, const Matx33f & Q_local) { m_sum_ += point; Q_ += Q_local; ++K_; } inline size_t empty() const { return K_ == 0; } inline int K() const { return K_; } /** The index of the plane */ int index_; protected: /** The 4th coefficient in the plane equation ax+by+cz+d = 0 */ float d_; /** Normal of the plane */ Vec3f n_; private: inline void UpdateD() { // Hessian form (d = nc . p_plane (centroid here) + p) //d = -1 * n.dot (xyz_centroid);//d =-axP+byP+czP d_ = -m_.dot(n_); } /** The sum of the points */ Vec3f m_sum_; /** The mean of the points */ Vec3f m_; /** The sum of pi * pi^\top */ Matx33f Q_; /** The different matrices we need to update */ Matx33f C_; float mse_; /** the number of points that form the plane */ int K_; }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** Basic planar child, with no sensor error model */ class Plane : public PlaneBase { public: Plane(const Vec3f & m, const Vec3f &n_in, int index) : PlaneBase(m, n_in, index) { } /** The computed distance is perfect in that case * @param p_j the point to compute its distance to * @return */ float distance(const Vec3f& p_j) const { return std::abs(float(p_j.dot(n_) + d_)); } }; //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// protected: void run( int ); }; CV_PlaneTest::CV_PlaneTest(){} CV_PlaneTest::~CV_PlaneTest(){} void CV_PlaneTest::run( int ) { string folder = cvtest::TS::ptr()->get_data_path() + "/" + STRUCTURED_LIGHT_DIR + "/" + FOLDER_DATA + "/"; structured_light::GrayCodePattern::Params params; params.width = 1280; params.height = 800; // Set up GraycodePattern with params Ptr graycode = structured_light::GrayCodePattern::create( params ); size_t numberOfPatternImages = graycode->getNumberOfPatternImages(); FileStorage fs( folder + "calibrationParameters.yml", FileStorage::READ ); if( !fs.isOpened() ) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } FileStorage fs2( folder + "gt_plane.yml", FileStorage::READ ); if( !fs.isOpened() ) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } // Loading ground truth plane parameters Vec4f plane_coefficients; Vec3f m; fs2["plane_coefficients"] >> plane_coefficients; fs2["m"] >> m; // Loading calibration parameters Mat cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, R, T; fs["cam1_intrinsics"] >> cam1intrinsics; fs["cam2_intrinsics"] >> cam2intrinsics; fs["cam1_distorsion"] >> cam1distCoeffs; fs["cam2_distorsion"] >> cam2distCoeffs; fs["R"] >> R; fs["T"] >> T; // Loading white and black images vector blackImages; vector whiteImages; blackImages.resize( 2 ); whiteImages.resize( 2 ); whiteImages[0] = imread( folder + "pattern_cam1_im43.jpg", 0 ); whiteImages[1] = imread( folder + "pattern_cam2_im43.jpg", 0 ); blackImages[0] = imread( folder + "pattern_cam1_im44.jpg", 0 ); blackImages[1] = imread( folder + "pattern_cam2_im44.jpg", 0 ); Size imagesSize = whiteImages[0].size(); if( ( !cam1intrinsics.data ) || ( !cam2intrinsics.data ) || ( !cam1distCoeffs.data ) || ( !cam2distCoeffs.data ) || ( !R.data ) || ( !T.data ) || ( !whiteImages[0].data ) || ( !whiteImages[1].data ) || ( !blackImages[0].data ) || ( !blackImages[1].data ) ) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } // Computing stereo rectify parameters Mat R1, R2, P1, P2, Q; Rect validRoi[2]; stereoRectify( cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, imagesSize, R, T, R1, R2, P1, P2, Q, 0, -1, imagesSize, &validRoi[0], &validRoi[1] ); Mat map1x, map1y, map2x, map2y; initUndistortRectifyMap( cam1intrinsics, cam1distCoeffs, R1, P1, imagesSize, CV_32FC1, map1x, map1y ); initUndistortRectifyMap( cam2intrinsics, cam2distCoeffs, R2, P2, imagesSize, CV_32FC1, map2x, map2y ); vector > captured_pattern; captured_pattern.resize( 2 ); captured_pattern[0].resize( numberOfPatternImages ); captured_pattern[1].resize( numberOfPatternImages ); // Loading and rectifying pattern images for( size_t i = 0; i < numberOfPatternImages; i++ ) { std::ostringstream name1; name1 << "pattern_cam1_im" << i + 1 << ".jpg"; captured_pattern[0][i] = imread( folder + name1.str(), 0 ); std::ostringstream name2; name2 << "pattern_cam2_im" << i + 1 << ".jpg"; captured_pattern[1][i] = imread( folder + name2.str(), 0 ); if( (!captured_pattern[0][i].data) || (!captured_pattern[1][i].data) ) { ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); } remap( captured_pattern[0][i], captured_pattern[0][i], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( captured_pattern[1][i], captured_pattern[1][i], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); } // Rectifying white and black images remap( whiteImages[0], whiteImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( whiteImages[1], whiteImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( blackImages[0], blackImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); remap( blackImages[1], blackImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() ); // Setting up threshold parameters to reconstruct only the plane in foreground graycode->setBlackThreshold( 55 ); graycode->setWhiteThreshold( 10 ); // Computing the disparity map Mat disparityMap; bool decoded = graycode->decode( captured_pattern, disparityMap, blackImages, whiteImages, structured_light::DECODE_3D_UNDERWORLD ); EXPECT_TRUE( decoded ); // Computing the point cloud Mat pointcloud; disparityMap.convertTo( disparityMap, CV_32FC1 ); reprojectImageTo3D( disparityMap, pointcloud, Q, true, -1 ); // from mm (unit of calibration) to m pointcloud = pointcloud / 1000; // Setting up plane with ground truth plane values Vec3f normal( plane_coefficients.val[0], plane_coefficients.val[1], plane_coefficients.val[2] ); Ptr plane = Ptr( new Plane( m, normal, 0 ) ); // Computing the distance of every point of the pointcloud from ground truth plane float sum_d = 0; int cont = 0; for( int i = 0; i < disparityMap.rows; i++ ) { for( int j = 0; j < disparityMap.cols; j++ ) { float value = disparityMap.at( i, j ); if( value != 0 ) { Vec3f point = pointcloud.at( i, j ); sum_d += plane->distance( point ); cont++; } } } sum_d /= cont; // test pass if the mean of points distance from ground truth plane is lower than 3 mm EXPECT_LE( sum_d, 0.003 ); } /****************************************************************************************\ * Test registration * \****************************************************************************************/ TEST( GrayCodePattern, plane_reconstruction ) { CV_PlaneTest test; test.safe_run(); } }} // namespace