/* * Software License Agreement (BSD License) * * Copyright (c) 2009, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include "test_precomp.hpp" static cv::Matx33d randomK(bool is_projective) { static cv::RNG rng; cv::Matx33d K = cv::Matx33d::zeros(); K(0, 0) = rng.uniform(100, 1000); K(1, 1) = rng.uniform(100, 1000); if (is_projective) { K(0, 2) = rng.uniform(-100, 100); K(1, 2) = rng.uniform(-100, 100); } K(2, 2) = 1.0; return K; } void generateScene(size_t n_views, size_t n_points, bool is_projective, cv::Matx33d & K, std::vector & R, std::vector & t, std::vector & P, cv::Mat_ & points3d, std::vector > & points2d) { R.resize(n_views); t.resize(n_views); cv::RNG rng; // Generate a bunch of random 3d points in a 0, 1 cube points3d.create(3, n_points); rng.fill(points3d, cv::RNG::UNIFORM, 0, 1); // Generate random intrinsics K = randomK(is_projective); // Generate random camera poses // TODO deal with smooth camera poses (e.g. from a video sequence) for (size_t i = 0; i < n_views; ++i) { // Get a random rotation axis cv::Vec3d vec; rng.fill(vec, cv::RNG::UNIFORM, 0, 1); // Give a random angle to the rotation vector vec = vec / cv::norm(vec) * rng.uniform(0.0f, float(2 * CV_PI)); cv::Rodrigues(vec, R[i]); // Create a random translation t[i] = cv::Vec3d(rng.uniform(-0.5f, 0.5f), rng.uniform(-0.5f, 0.5f), rng.uniform(1.0f, 2.0f)); // Make sure the shape is in front of the camera cv::Mat_ points3d_transformed = cv::Mat(R[i]) * points3d + cv::Mat(t[i]) * cv::Mat_ ::ones(1, n_points); double min_dist, max_dist; cv::minMaxIdx(points3d_transformed.row(2), &min_dist, &max_dist); if (min_dist < 0) t[i][2] = t[i][2] - min_dist + 1.0; } // Compute projection matrices P.resize(n_views); for (size_t i = 0; i < n_views; ++i) { cv::Matx33d K3 = K, R3 = R[i]; cv::Vec3d t3 = t[i]; cv::sfm::projectionFromKRt(K3, R3, t3, P[i]); } // Compute homogeneous 3d points cv::Mat_ points3d_homogeneous(4, n_points); points3d.copyTo(points3d_homogeneous.rowRange(0, 3)); points3d_homogeneous.row(3).setTo(1); // Project those points for every view points2d.resize(n_views); for (size_t i = 0; i < n_views; ++i) { cv::Mat_ points2d_tmp = cv::Mat(P[i]) * points3d_homogeneous; points2d[i].create(2, n_points); for (unsigned char j = 0; j < 2; ++j) cv::Mat(points2d_tmp.row(j) / points2d_tmp.row(2)).copyTo(points2d[i].row(j)); } // TODO: remove a certain number of points per view // TODO: add a certain number of outliers per view }