#include #include #include "opencv2/core.hpp" #include #include "opencv2/highgui.hpp" #include "opencv2/cudaoptflow.hpp" #include "opencv2/cudaarithm.hpp" using namespace std; using namespace cv; using namespace cv::cuda; inline bool isFlowCorrect(Point2f u) { return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9; } static Vec3b computeColor(float fx, float fy) { static bool first = true; // relative lengths of color transitions: // these are chosen based on perceptual similarity // (e.g. one can distinguish more shades between red and yellow // than between yellow and green) const int RY = 15; const int YG = 6; const int GC = 4; const int CB = 11; const int BM = 13; const int MR = 6; const int NCOLS = RY + YG + GC + CB + BM + MR; static Vec3i colorWheel[NCOLS]; if (first) { int k = 0; for (int i = 0; i < RY; ++i, ++k) colorWheel[k] = Vec3i(255, 255 * i / RY, 0); for (int i = 0; i < YG; ++i, ++k) colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0); for (int i = 0; i < GC; ++i, ++k) colorWheel[k] = Vec3i(0, 255, 255 * i / GC); for (int i = 0; i < CB; ++i, ++k) colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255); for (int i = 0; i < BM; ++i, ++k) colorWheel[k] = Vec3i(255 * i / BM, 0, 255); for (int i = 0; i < MR; ++i, ++k) colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR); first = false; } const float rad = sqrt(fx * fx + fy * fy); const float a = atan2(-fy, -fx) / (float)CV_PI; const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1); const int k0 = static_cast(fk); const int k1 = (k0 + 1) % NCOLS; const float f = fk - k0; Vec3b pix; for (int b = 0; b < 3; b++) { const float col0 = colorWheel[k0][b] / 255.0f; const float col1 = colorWheel[k1][b] / 255.0f; float col = (1 - f) * col0 + f * col1; if (rad <= 1) col = 1 - rad * (1 - col); // increase saturation with radius else col *= .75; // out of range pix[2 - b] = static_cast(255.0 * col); } return pix; } static void drawOpticalFlow(const Mat_& flowx, const Mat_& flowy, Mat& dst, float maxmotion = -1) { dst.create(flowx.size(), CV_8UC3); dst.setTo(Scalar::all(0)); // determine motion range: float maxrad = maxmotion; if (maxmotion <= 0) { maxrad = 1; for (int y = 0; y < flowx.rows; ++y) { for (int x = 0; x < flowx.cols; ++x) { Point2f u(flowx(y, x), flowy(y, x)); if (!isFlowCorrect(u)) continue; maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y)); } } } for (int y = 0; y < flowx.rows; ++y) { for (int x = 0; x < flowx.cols; ++x) { Point2f u(flowx(y, x), flowy(y, x)); if (isFlowCorrect(u)) dst.at(y, x) = computeColor(u.x / maxrad, u.y / maxrad); } } } static void showFlow(const char* name, const GpuMat& d_flow) { GpuMat planes[2]; cuda::split(d_flow, planes); Mat flowx(planes[0]); Mat flowy(planes[1]); Mat out; drawOpticalFlow(flowx, flowy, out, 10); imshow(name, out); } int main(int argc, const char* argv[]) { string filename1, filename2; if (argc < 3) { cerr << "Usage : " << argv[0] << " " << endl; filename1 = "../data/basketball1.png"; filename2 = "../data/basketball2.png"; } else { filename1 = argv[1]; filename2 = argv[2]; } Mat frame0 = imread(filename1, IMREAD_GRAYSCALE); Mat frame1 = imread(filename2, IMREAD_GRAYSCALE); if (frame0.empty()) { cerr << "Can't open image [" << filename1 << "]" << endl; return -1; } if (frame1.empty()) { cerr << "Can't open image [" << filename2 << "]" << endl; return -1; } if (frame1.size() != frame0.size()) { cerr << "Images should be of equal sizes" << endl; return -1; } GpuMat d_frame0(frame0); GpuMat d_frame1(frame1); GpuMat d_flow(frame0.size(), CV_32FC2), d_flowxy; Ptr brox = cuda::BroxOpticalFlow::create(0.197f, 50.0f, 0.8f, 10, 77, 10); Ptr lk = cuda::DensePyrLKOpticalFlow::create(Size(7, 7)); Ptr farn = cuda::FarnebackOpticalFlow::create(); Ptr tvl1 = cuda::OpticalFlowDual_TVL1::create(); Ptr nvof = cuda::NvidiaOpticalFlow_1_0::create( frame0.size().width, frame0.size().height, NvidiaOpticalFlow_1_0::NVIDIA_OF_PERF_LEVEL::NV_OF_PERF_LEVEL_FAST); { GpuMat d_frame0f; GpuMat d_frame1f; d_frame0.convertTo(d_frame0f, CV_32F, 1.0 / 255.0); d_frame1.convertTo(d_frame1f, CV_32F, 1.0 / 255.0); const int64 start = getTickCount(); brox->calc(d_frame0f, d_frame1f, d_flow); const double timeSec = (getTickCount() - start) / getTickFrequency(); cout << "Brox : " << timeSec << " sec" << endl; showFlow("Brox", d_flow); } { const int64 start = getTickCount(); lk->calc(d_frame0, d_frame1, d_flow); const double timeSec = (getTickCount() - start) / getTickFrequency(); cout << "LK : " << timeSec << " sec" << endl; showFlow("LK", d_flow); } { const int64 start = getTickCount(); farn->calc(d_frame0, d_frame1, d_flow); const double timeSec = (getTickCount() - start) / getTickFrequency(); cout << "Farn : " << timeSec << " sec" << endl; showFlow("Farn", d_flow); } { const int64 start = getTickCount(); tvl1->calc(d_frame0, d_frame1, d_flow); const double timeSec = (getTickCount() - start) / getTickFrequency(); cout << "TVL1 : " << timeSec << " sec" << endl; showFlow("TVL1", d_flow); } { //The timing displayed below includes the time taken to copy the input buffers to the OF CUDA input buffers //and to copy the output buffers from the OF CUDA output buffer to the output buffer. //Hence it is expected to be more than what is displayed in the NVIDIA Optical Flow SDK documentation. const int64 start = getTickCount(); nvof->calc(d_frame0, d_frame1, d_flowxy); const double timeSec = (getTickCount() - start) / getTickFrequency(); cout << "NVIDIAOpticalFlow : " << timeSec << " sec" << endl; nvof->upSampler(d_flowxy, frame0.size().width, frame0.size().height, nvof->getGridSize(), d_flow); showFlow("NVIDIAOpticalFlow", d_flow); } imshow("Frame 0", frame0); imshow("Frame 1", frame1); waitKey(); return 0; }